Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_2001_9_12_2_a1, author = {Dattoli, Giuseppe}, title = {Pseudo {Laguerre} and pseudo {Hermite} polynomials}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {75--84}, publisher = {mathdoc}, volume = {Ser. 9, 12}, number = {2}, year = {2001}, zbl = {1170.33300}, mrnumber = {1734597}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_2_a1/} }
TY - JOUR AU - Dattoli, Giuseppe TI - Pseudo Laguerre and pseudo Hermite polynomials JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2001 SP - 75 EP - 84 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_2_a1/ LA - en ID - RLIN_2001_9_12_2_a1 ER -
%0 Journal Article %A Dattoli, Giuseppe %T Pseudo Laguerre and pseudo Hermite polynomials %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2001 %P 75-84 %V 12 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_2_a1/ %G en %F RLIN_2001_9_12_2_a1
Dattoli, Giuseppe. Pseudo Laguerre and pseudo Hermite polynomials. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 12 (2001) no. 2, pp. 75-84. http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_2_a1/
[1] Le funzioni pseudo iperboliche e pseudo trigonometriche. Pubblicazione dell’Istituto di Matematica Applicata, n. 192, 1978. | Zbl
,[2] Theory and applications of generalized Bessel functions. Aracne, Roma 1996. | Zbl
- ,[3] Operational methods and two-variable Laguerre polynomials. Atti Accademia di Torino, 132, 1998, 1-7. | MR | Zbl
- ,[4] Special functions for engineers and applied mathematicians. MacMillan, New York 1985. | MR | Zbl
,[5] Generalized polynomials and associated operational identities. J. Comp. Appl. Math., 108, 1999, 209-218. | DOI | MR | Zbl
- - - ,[6] Arbitrary order Hermite generating functions for obtaining higher-order coherent and squeezed states. Phys. Lett., A208, 1995, 8-16. | Zbl
- ,[7] Generalized generating functions. Nuovo Cimento, 113B, 1998, 271-273. | MR
- ,[8] Biorthogonal polynomials suggested by the Laguerre polynomials. Pacific J. Math., 21, 1967, 303-314. | fulltext mini-dml | MR | Zbl
,[9] Decomposition of some complex functions with respect to the cyclic group of order $n$. Appl. Math. Infor., 4, 2000. | MR | Zbl
,[10] Decomposition of Laguerre polynomials with respect to the cyclic group of order $n$. J. Comp. Appl. Math., 99, 1998, 55-66. | DOI | MR | Zbl
,[11] On a new family of Laguerre polynomials. Atti Accademia di Torino, submitted.
- - ,[12] A class of polynomials defined by generalized Rodriguez formula. Ann. Math. Pur. Appl., 90, 1971, 75-85. | MR | Zbl
- ,[13] W.B. Colson - G. Pellegrini – A. Renieri (eds.), Laser handbook. Vol. 6, North Holland, Amsterdam 1990.