Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_2001_9_12_1_a3, author = {Loreti, Paola}, title = {Exact controllability of shells in minimal time}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {43--48}, publisher = {mathdoc}, volume = {Ser. 9, 12}, number = {1}, year = {2001}, zbl = {1170.93310}, mrnumber = {1794544}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_1_a3/} }
TY - JOUR AU - Loreti, Paola TI - Exact controllability of shells in minimal time JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2001 SP - 43 EP - 48 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_1_a3/ LA - en ID - RLIN_2001_9_12_1_a3 ER -
%0 Journal Article %A Loreti, Paola %T Exact controllability of shells in minimal time %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2001 %P 43-48 %V 12 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_1_a3/ %G en %F RLIN_2001_9_12_1_a3
Loreti, Paola. Exact controllability of shells in minimal time. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 12 (2001) no. 1, pp. 43-48. http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_1_a3/
[1] Ingham type theorems and applications to control theory. Boll. Un. Mat. Ital., B (8), II - B, n. 1 febbraio 1999, 33-63. | fulltext bdim | fulltext EuDML | fulltext mini-dml | MR | Zbl
- - ,[2] Généralisation d’un théorème de Beurling et application à la théorie du contrȏle. C. R. Acad. Sci. Paris Sér. I Math., 330 (4), 2000, 281-286. | DOI | MR | Zbl
- - ,[3] The Collected Works of Arne Beurling. Vol. 2, Birkhäuser, Boston 1989.
- - - ,[4] Introduzione alla controllabilità esatta per la calotta sferica. Quaderno IAC 8/1989.
- - ,[5] Exact Controllability of a shallow shell model. Int. Series of Num. Math., 107, 1992, 85-97. | MR | Zbl
- - ,[6] Exact controllability of a spherical shell via harmonic analysis. In: J.-L. Lions - C. Baiocchi (eds.), Boundary Values Problems for Partial Differential Equations and Applications. Masson, Paris 1993. | MR | Zbl
- - ,[7] Spectral problems for thin shells and exact controllability. In: Spectral Analysis of Complex Structures. Travaux en cours, 49, Hermann, Paris 1995, 35-57. | MR | Zbl
- - ,[8] Some trigonometrical inequalities with applications in the theory of series. Math. Z., 41, 1936, 367-379. | fulltext EuDML | DOI | MR | Zbl
,[9] On a theorem of Ingham. J. Fourier Anal. Appl., 3, 1997, n. 5, 577-582. | fulltext EuDML | DOI | MR | Zbl
- - ,[10] Ingham type theorems for vector-valued functions and observability of coupled linear systems. SIAM J. Control Optim., 37, 1998, 461-485. | DOI | MR | Zbl
- ,[11] Observability of compactly perturbed systems. J. Math. Anal. Appl., 243, 2000, 409-428. | DOI | MR | Zbl
- ,[12] Boundary Stabilization of Thin Plates. SIAM Studies in Appl. Math., Philadelphia 1989. | DOI | MR | Zbl
,[13] Modelling, Analysis and Control of Thin Plates. Masson, Paris 1988. | MR | Zbl
- ,[14] Exact controllability, stabilization and perturbations for distributed systems. SIAM J. Control Optim., 30, 1988, 1-68. | DOI | MR | Zbl
,[15] Contrôlabilité exacte et stabilisation de systèmes distribués. Voll. 1-2, Masson, Paris 1988. | fulltext EuDML | Zbl
,[16] Application of a new Ingham type theorem to the control of spherical shells. In: V. Zakharov (ed.), Proceedings of the 11th IFAC International Workshop Control Applications of Optimization (St. Petersburg, Russia, July 3-6, 2000). Pergamon, 2000.
,[17] A treatise on the mathematical theory of elasticity. Dover, New York 1944. | Jbk 47.0750.09 | MR | Zbl
,[18] Asymptotic and spectral properties of a class of singular-stiff problems. J. Math. Pures Appl., 71, 1992, 379-406. | MR | Zbl
,[19] Theory of elastic stability. McGraw-Hill, New York 1936. | MR
,[20] Eigenfunction Expansions Associated with Second-Order Differential Equations. Clarendon Press, Oxford 1962. | MR | Zbl
,