Exact controllability of shells in minimal time
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 12 (2001) no. 1, pp. 43-48.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We prove an exact controllability result for thin cups using the Fourier method and recent improvements of Ingham type theorems, given in a previous paper [2].
Dimostriamo un risultato di controllabilità esatta per calotte sottili, utilizzando il metodo di Fourier e miglioramenti recenti di teoremi di tipo Ingham, dati in un precedente articolo [2].
@article{RLIN_2001_9_12_1_a3,
     author = {Loreti, Paola},
     title = {Exact controllability of shells in minimal time},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {43--48},
     publisher = {mathdoc},
     volume = {Ser. 9, 12},
     number = {1},
     year = {2001},
     zbl = {1170.93310},
     mrnumber = {1794544},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_1_a3/}
}
TY  - JOUR
AU  - Loreti, Paola
TI  - Exact controllability of shells in minimal time
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2001
SP  - 43
EP  - 48
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_1_a3/
LA  - en
ID  - RLIN_2001_9_12_1_a3
ER  - 
%0 Journal Article
%A Loreti, Paola
%T Exact controllability of shells in minimal time
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2001
%P 43-48
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_1_a3/
%G en
%F RLIN_2001_9_12_1_a3
Loreti, Paola. Exact controllability of shells in minimal time. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 12 (2001) no. 1, pp. 43-48. http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_1_a3/

[1] C. Baiocchi - V. Komornik - P. Loreti, Ingham type theorems and applications to control theory. Boll. Un. Mat. Ital., B (8), II - B, n. 1 febbraio 1999, 33-63. | fulltext bdim | fulltext EuDML | fulltext mini-dml | MR | Zbl

[2] C. Baiocchi - V. Komornik - P. Loreti, Généralisation d’un théorème de Beurling et application à la théorie du contrȏle. C. R. Acad. Sci. Paris Sér. I Math., 330 (4), 2000, 281-286. | DOI | MR | Zbl

[3] L. Carleson - P. Malliavin - J. Neuberger - J. Wermer (Eds.), The Collected Works of Arne Beurling. Vol. 2, Birkhäuser, Boston 1989.

[4] G. Geymonat - P. Loreti - V. Valente, Introduzione alla controllabilità esatta per la calotta sferica. Quaderno IAC 8/1989.

[5] G. Geymonat - P. Loreti - V. Valente, Exact Controllability of a shallow shell model. Int. Series of Num. Math., 107, 1992, 85-97. | MR | Zbl

[6] G. Geymonat - P. Loreti - V. Valente, Exact controllability of a spherical shell via harmonic analysis. In: J.-L. Lions - C. Baiocchi (eds.), Boundary Values Problems for Partial Differential Equations and Applications. Masson, Paris 1993. | MR | Zbl

[7] G. Geymonat - P. Loreti - V. Valente, Spectral problems for thin shells and exact controllability. In: Spectral Analysis of Complex Structures. Travaux en cours, 49, Hermann, Paris 1995, 35-57. | MR | Zbl

[8] A. E. Ingham, Some trigonometrical inequalities with applications in the theory of series. Math. Z., 41, 1936, 367-379. | fulltext EuDML | DOI | MR | Zbl

[9] S. Jaffard - M. Tucsnak - E. Zuazua, On a theorem of Ingham. J. Fourier Anal. Appl., 3, 1997, n. 5, 577-582. | fulltext EuDML | DOI | MR | Zbl

[10] V. Komornik - P. Loreti, Ingham type theorems for vector-valued functions and observability of coupled linear systems. SIAM J. Control Optim., 37, 1998, 461-485. | DOI | MR | Zbl

[11] V. Komornik - P. Loreti, Observability of compactly perturbed systems. J. Math. Anal. Appl., 243, 2000, 409-428. | DOI | MR | Zbl

[12] J. Lagnese, Boundary Stabilization of Thin Plates. SIAM Studies in Appl. Math., Philadelphia 1989. | DOI | MR | Zbl

[13] J. Lagnese - J.-L. Lions, Modelling, Analysis and Control of Thin Plates. Masson, Paris 1988. | MR | Zbl

[14] J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems. SIAM J. Control Optim., 30, 1988, 1-68. | DOI | MR | Zbl

[15] J.-L. Lions, Contrôlabilité exacte et stabilisation de systèmes distribués. Voll. 1-2, Masson, Paris 1988. | fulltext EuDML | Zbl

[16] P. Loreti, Application of a new Ingham type theorem to the control of spherical shells. In: V. Zakharov (ed.), Proceedings of the 11th IFAC International Workshop Control Applications of Optimization (St. Petersburg, Russia, July 3-6, 2000). Pergamon, 2000.

[17] A. E. H. Love, A treatise on the mathematical theory of elasticity. Dover, New York 1944. | Jbk 47.0750.09 | MR | Zbl

[18] E. Sanchez-Palencia, Asymptotic and spectral properties of a class of singular-stiff problems. J. Math. Pures Appl., 71, 1992, 379-406. | MR | Zbl

[19] S. Timoshenko, Theory of elastic stability. McGraw-Hill, New York 1936. | MR

[20] E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations. Clarendon Press, Oxford 1962. | MR | Zbl