A counterexample to Schauder estimates for elliptic operators with unbounded coefficients
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 12 (2001) no. 1, pp. 15-25.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We consider a homogeneous elliptic Dirichlet problem involving an Ornstein-Uhlenbeck operator in a half space $\mathbb{R}^{2}_{+}$ of $\mathbb{R}^{2}$. We show that for a particular initial datum, which is Lipschitz continuous and bounded on $\mathbb{R}^{2}_{+}$, the second derivative of the classical solution is not uniformly continuous on $\mathbb{R}^{2}_{+}$. In particular this implies that the well known maximal Hölder-regularity results fail in general for Dirichlet problems in unbounded domains involving unbounded coefficients.
Si considera un problema ellittico di Dirichlet in un semispazio $\mathbb{R}^{2}_{+}$ di $\mathbb{R}^{2}$. In esso compare un operatore di tipo Ornstein-Uhlenbeck. Si dimostra, con calcoli espliciti, che per un particolare dato iniziale lipschitziano la corrispondente soluzione classica non ha la derivata seconda uniformemente continua su $\mathbb{R}^{2}_{+}$. Questo risultato implica in particolare che le ben note stime di Schauder non valgono in generale per problemi di Dirichlet su domini illimitati se i coefficienti sono illimitati.
@article{RLIN_2001_9_12_1_a1,
     author = {Priola, Enrico},
     title = {A counterexample to {Schauder} estimates for elliptic operators with unbounded coefficients},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {15--25},
     publisher = {mathdoc},
     volume = {Ser. 9, 12},
     number = {1},
     year = {2001},
     zbl = {1072.35521},
     mrnumber = {208160},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_1_a1/}
}
TY  - JOUR
AU  - Priola, Enrico
TI  - A counterexample to Schauder estimates for elliptic operators with unbounded coefficients
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2001
SP  - 15
EP  - 25
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_1_a1/
LA  - en
ID  - RLIN_2001_9_12_1_a1
ER  - 
%0 Journal Article
%A Priola, Enrico
%T A counterexample to Schauder estimates for elliptic operators with unbounded coefficients
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2001
%P 15-25
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_1_a1/
%G en
%F RLIN_2001_9_12_1_a1
Priola, Enrico. A counterexample to Schauder estimates for elliptic operators with unbounded coefficients. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 12 (2001) no. 1, pp. 15-25. http://geodesic.mathdoc.fr/item/RLIN_2001_9_12_1_a1/

[1] D.G. Aronson - P. Besala, Parabolic Equations with Unbounded Coefficients. J. Diff. Eq., 3, 1967, 1-14. | MR | Zbl

[2] P. Besala, On the existence of a Foundamental Solution for a Parabolic Equation with Unbounded Coefficients. Ann. Polon. Math., 29, 1975, 403-409. | MR | Zbl

[3] S. Bochner, Harmonic Analysis and the theory of probability. California Monographs in Mathematical Science, University of California Press, Berkeley 1955. | MR | Zbl

[4] E. Barucci - F. Gozzi - V. Vespri, On a semigroup approach to no-arbitrage pricing theory. Proceedings of the Seminar on Stochastic Analysis, Random Fields and Applications, Ascona, Switzerland, 1996. | Zbl

[5] P. Cannarsa - G. Da Prato, Infinite Dimensional Elliptic Equations with Hölder continuous coefficients. Advances in Differential equations, 1, n. 3, 1996, 425-452. | MR | Zbl

[6] P. Cannarsa - V. Vespri, Generation of analytic semigroups by elliptic operators with unbounded coefficients. SIAM J. Math. Anal., 18, 1987, 857-872. | DOI | MR | Zbl

[7] S. Cerrai, Elliptic and parabolic equations in $\mathbb{R}^{n}$ with coefficients having polynomial growth. Comm. Part. Diff. Eqns., 21, 1996, 281-317. | DOI | MR | Zbl

[8] G. Da Prato - A. Lunardi, On the Ornstein-Uhlenbeck operator in spaces of continuous functions. J. Funct. Anal., 131, 1995, 94-114. | DOI | MR | Zbl

[9] M.I. Friedlin - A.D. Wentzell, Random perturbation of dynamical systems. Springer-Verlag, Berlin 1983. | Zbl

[10] D. Gilbarg - N. Trudinger, Elliptic Partial Differential Equations of Second Order. 2nd ed., Springer-Verlag, Berlin 1983. | MR | Zbl

[11] N.V. Krylov, Lectures on Elliptic and Parabolic Equations in Hölder Spaces. Graduate Studies in Mathematics, A.M.S., 1996. | Zbl

[12] N.V. Krylov - M. Röckner - J. Zabczyk - G. Da Prato (Eds.), Stochastic PDE’s and Kolmogorov Equations in Infinite Dimensions. Lect. Notes in Math., 1715, Springer-Verlag, 1999.

[13] A. Lunardi, Analytic semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser, 1995. | DOI | MR | Zbl

[14] L. Lorenzi, Schauder estimates for the Ornstein-Uhlenbeck semigroup in spaces of functions with polynomial and exponential growth. Dynamic Syst. and Appl., 9, 2000, 199-220. | MR | Zbl

[15] A. Lunardi, Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in $\mathbb{R}^{n}$. Ann. Sc. Norm. Sup. Pisa, s. 4, 24, 1997, 133-164. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[16] A. Lunardi - V. Vespri, Optimal $L^{\infty}$ and Schauder estimates for elliptic and parabolic operators with unbounded coefficients. In: G. Caristi - E. Mitidieri (eds.), Proc. Conf. Reaction-diffusion systems. Lecture notes in pure and applied mathematics, 194, M. Dekker, 1998, 217-239. | MR | Zbl

[17] E. Priola - L. Zambotti, New optimal regularity results for infinite dimensional elliptic equations. Boll. Un. Mat. It., (8) 3-B, 2000, 411-429. | fulltext bdim | fulltext EuDML | fulltext mini-dml | MR | Zbl

[18] E. Priola, On a Dirichlet Problem Involving an Ornstein-Uhlenbeck Operator. Scuola Normale Superiore di Pisa, settembre 2000, preprint. | DOI | MR | Zbl

[19] R.L. Schilling, Subordination in the sense of Bochner and a related functional calculus. J. Austral. Math. Soc., Ser. A, 64, n. 3, 1998, 368-396. | MR | Zbl

[20] S.J. Sheu, Solution of certain parabolic equations with unbounded coefficients and its application to non-linear filtering. Stochastics, 10, 1983, 31-46. | DOI | MR | Zbl

[21] L. Zambotti, A new approach to existence and uniqueness for martingale problems in infinite dimensions. Prob. Theory and Rel. Fields, to appear. | Zbl