Unitary Representations of Reductive Lie Groups
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 11 (2000) no. S1, pp. 147-167.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

One of the fundamental problems of abstract harmonic analysis is the determination of the irreducible unitary representations of simple Lie groups. After recalling why this problem is of interest, we discuss the present state of knowledge about it. In the language of Kirillov and Kostant, the problem finally is to «quantize» nilpotent coadjoint orbits.
@article{RLIN_2000_9_11_S1_a8,
     author = {Vogan, David A.jun.},
     title = {Unitary {Representations} of {Reductive} {Lie} {Groups}},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {147--167},
     publisher = {mathdoc},
     volume = {Ser. 9, 11},
     number = {S1},
     year = {2000},
     zbl = {1149.22301},
     mrnumber = {1845669},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_S1_a8/}
}
TY  - JOUR
AU  - Vogan, David A.jun.
TI  - Unitary Representations of Reductive Lie Groups
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2000
SP  - 147
EP  - 167
VL  - 11
IS  - S1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_S1_a8/
LA  - en
ID  - RLIN_2000_9_11_S1_a8
ER  - 
%0 Journal Article
%A Vogan, David A.jun.
%T Unitary Representations of Reductive Lie Groups
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2000
%P 147-167
%V 11
%N S1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_S1_a8/
%G en
%F RLIN_2000_9_11_S1_a8
Vogan, David A.jun. Unitary Representations of Reductive Lie Groups. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 11 (2000) no. S1, pp. 147-167. http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_S1_a8/

[1] V. Arnold, Mathematical Methods of Classical Mechanics. Springer-Verlag, New York-Heidelberg-Berlin 1978. | MR | Zbl

[2] D. Barbasch - D. Vogan, Unipotent representations of complex semisimple Lie groups. Ann. of Math., 121, 1985,41-110. | DOI | MR | Zbl

[3] A. Borel - N. Wallach, Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups. Princeton University Press, Princeton, New Jersey 1980. | MR

[4] J. Dixmier, Les $C^{\star}$-algèbres et leurs représentations. Gauthier-Villars, Paris 1964. | MR

[5] M. Duflo, Théorie de Mackey pour les groupes de Lie algébriques. Acta Math., 149, 1982, 153-213. | DOI | MR | Zbl

[6] A. Guichardet, Cohomologie des Groupes Topologiques et des Algèbres de Lie. CEDIC, Paris 1980. | MR

[7] A. Knapp, Representation Theory of Semisimple Groups: An Overview Based on Examples. Princeton University Press, Princeton, New Jersey 1986. | DOI | MR | Zbl

[8] B. Kostant, Quantization and unitary representations. In: C. Taam (ed.), Lectures in Modem Analysis and Applications. Lecture Notes in Mathematics, 170, Springer-Verlag, Berlin-Heidelberg-New York 1970. | MR

[9] S. Kumaresan, On the canonical k-types in the irreducible unitary g-modules with non-zero relative cohomology. Invent. Math., 59, 1980, 1-11. | fulltext EuDML | DOI | MR | Zbl

[10] G. Makey, Mathematical Foundations of Quantum Mechanics. W. A. Benjamin Inc., New York 1963. | MR

[11] G. Makey, Theory of Unitary Group Representations. University of Chicago Press, Chicago 1976. | MR

[12] W. Mcgovern, Rings of regular functions on nilpotent orbits and their covers. Inv. Math., 97, 1989, 209-217. | fulltext EuDML | DOI | MR | Zbl

[13] W. Schmid, $L_{2}$ cohomology and the discrete series. Ann. of Math., 103, 1976, 375-394. | DOI | MR | Zbl

[14] P. Torasso, Méthode des orbites de Kirillov-Duflo et représentations minimales des groupes simples sur un corps local de caractéristique nulle. Duke Math. J., 90, 1997, 261-377. | DOI | MR | Zbl

[15] D. Vogan, Unitarizability of certain series of representations. Ann. of Math., 120, 1984, 141-187. | DOI | MR | Zbl

[16] D. Vogan, Associated varieties and unipotent representations. In: W. Barker - P. Sally (eds.), Harmonic Analysis on Reductive Groups. Birkhäuser, Boston-Basel-Berlin 1991, 315-388. | MR | Zbl

[17] D. Vogan, The unitary dual of $G_{2}$. Invent. Math., 116, 1994, 677-791. | fulltext EuDML | DOI | MR | Zbl

[18] D. Vogan, The method of coadjoint orbits for real reductive groups. Representation Theory of Lie Groups, IAS/Park City Mathematics Series, 8, American Mathematical Society, Providence, RI, 1999. | MR

[19] D. Vogan - G. Zuckerman, Unitary representations with non-zero cohomology. Compositio Math., 53, 1984, 51-90. | fulltext EuDML | MR | Zbl