A Lecture on Noncommutative Geometry
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 11 (2000) no. S1, pp. 31-64.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The origin of Noncommutative Geometry is twofold. On the one hand there is a wealth of examples of spaces whose coordinate algebra is no longer commutative but which have obvious geometric meaning. The first examples came from phase space in quantum mechanics but there are many others, such as the leaf spaces of foliations, duals of nonabelian discrete groups, the space of Penrose tilings, the Noncommutative torus which plays a role in M-theory compactification and finally the Adele class space which is a natural geometric space carrying an action of the analogue of the Frobenius for global fields of zero characteristic. On the other hand the stretching of geometric thinking imposed by passing to Noncommutative spaces forces one to rethink about most of our familiar notions. The difficulty is not to add arbitrarily the adjective quantum behind our familiar geometric language but to develop far reaching extensions of classical concepts. Several of these new developments are described below with emphasis on the surprises from the noncommutative world.
@article{RLIN_2000_9_11_S1_a3,
     author = {Connes, Alain},
     title = {A {Lecture} on {Noncommutative} {Geometry}},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {31--64},
     publisher = {mathdoc},
     volume = {Ser. 9, 11},
     number = {S1},
     year = {2000},
     zbl = {1149.58302},
     mrnumber = {1839740},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_S1_a3/}
}
TY  - JOUR
AU  - Connes, Alain
TI  - A Lecture on Noncommutative Geometry
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2000
SP  - 31
EP  - 64
VL  - 11
IS  - S1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_S1_a3/
LA  - en
ID  - RLIN_2000_9_11_S1_a3
ER  - 
%0 Journal Article
%A Connes, Alain
%T A Lecture on Noncommutative Geometry
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2000
%P 31-64
%V 11
%N S1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_S1_a3/
%G en
%F RLIN_2000_9_11_S1_a3
Connes, Alain. A Lecture on Noncommutative Geometry. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 11 (2000) no. S1, pp. 31-64. http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_S1_a3/

[1] A. Connes, Une classification des facteurs de type III. Ann. Sci. Ecole Norm. Sup., 6, n. 4, 1973, 133-252. | fulltext EuDML | MR | Zbl

[2] M. Takesaki, Tomita's theory of modular Hilbert algebras and its applications. Lecture Notes in Math., 28, Springer-Verlag, 1970. | MR | Zbl

[3] M. Takesaki, Duality for crossed products and the structure of von Neumann algebras of type III. Acta Math., 131, 1973, 249-310. | DOI | MR | Zbl

[4] W. Krieger, On ergodic flows and the isomorphism of factors. Math. Ann., 223, 1976, 19-70. | fulltext EuDML | DOI | MR | Zbl

[5] A. Connes - M. Takesaki, The flow of weights on factors of type III. Tohoku Math. J., 29, 1977, 473-575. | DOI | MR | Zbl

[6] A. Connes, Classification of injective factors. Ann. of Math., 104, n. 2, 1976, 73-115. | DOI | MR | Zbl

[7] A. Connes, Outer conjugacy classes of automorphisms of factors. Ann. Sci. Ecole Norm. Sup., 8, n. 4, 1975, 383-419. | fulltext EuDML | MR | Zbl

[8] A. Connes, Factors of type $III_{1}$, property $L^{1}_{\lambda}$ and closure of inner automorphisms. J. Operator Theory, 14, 1985, 189-211. | MR | Zbl

[9] U. Haagerup, Connes' bicentralizer problem and uniqueness of the injective factor of type. $III_{1}$. Acta Math., 158, 1987, 95-148. | DOI | MR | Zbl

[10] A. Connes, Noncommutative Geometry and the Riemann Zeta Function, invited lecture in IMU 2000 volume. To appear. | MR

[11] M. F. Atiyah, Global theory of elliptic operators. Proc. Internat. Conf. on Functional Analysis and Related Topics (Tokyo, 1969). University of Tokyo Press, Tokyo 1970, 21-30. | MR

[12] I. M. Singer, Future extensions of index theory and elliptic operators. Ann. of Math. Studies, 70, 1971, 171-185. | MR

[13] L.G. Brown - R.G. Douglas - P.A. Fillmore, Extensions of $C^{\star}$-algebras and K-homology. Ann. of Math., 2, 105, 1977, 265-324. | DOI | MR | Zbl

[14] A. S. Mishenko, $C^{\star}$-algebras and K theory. Algebraic Topology, Aarhus 1978, Lecture Notes in Math., 763, Springer-Verlag, 1979, 262-274. | MR

[15] G. G. Kasparov, The operator K-functor and extensions of $C^{\star}$-algebras. Izv. Akad. Nauk SSSR, Ser. Mat., 44, 1980, 571-636; Math. USSR Izv., 16, 1981, 513-572. | MR | Zbl

[16] P. Baum - A. Connes, Geometric K-theory for Lie groups and foliations. Preprint IHES (M /82/), 1982; l'Enseignement Mathématique, t. 46, 2000, 1-35 (to appear). | MR

[17] M. F. Atiyah - W. Schmid, A geometric construction of the discrete series for semisimple Lie groups. Inventiones Math., 42, 1977, 1-62. | fulltext EuDML | DOI | MR | Zbl

[18] G. Skandalis, Approche de la conjecture de Novikov par la cohomologie cyclique. In: Séminaire Bourbaki, 1990-91, Expose 739, 201-202-203, 1992, 299-316. | fulltext EuDML | MR

[19] P. Julg, Travaux de N. Higson et G. Kasparov sur la conjecture de Baum-Connes. In: Séminaire Bourbaki, 1997-98, Expose 841, 252, 1998, 151-183. | fulltext EuDML | MR

[20] G. Skandalis, Progrès recents sur la conjecture de Baum-Connes, contribution de Vincent Lafforgue. In: Séminaire Bourbaki, 1999-2000, Expose 869. | fulltext EuDML

[21] A. Connes, Cohomologie cyclique et foncteurs $Ext^{n}$. C.R. Acad. Sci. Paris, Ser. I Math, 296, 1983, 953-958. | MR

[22] A. Connes, Spectral sequence and homology of currents for operator algebras. Math. Forschungsinst. Oberwolfach Tagungsber., 41/81; Funktionalanalysis und $C^{\star}$C⋆-Algebren, 27-9/3-10, 1981.

[23] A. Connes, Noncommutative differential geometry. Part I: The Chern character in K-homology. Preprint IHES, M/82/53, 1982; Part II: de Rham homology and noncommutative algebra. Preprint IHES, M/83/19, 1983.

[24] A. Connes, Noncommutative differential geometry. Inst. Hautes Etudes Sci. Publ. Math., 62, 1985, 257-360. | fulltext EuDML | MR

[25] B. L. Tsygan, Homology of matrix Lie algebras over rings and the Hochschild homology. Uspekhi Math. Nauk., 38, 1983,217-218. | MR | Zbl

[26] A. Connes - H. Moscovici, Cyclic cohomology, the Novikov conjecture and hyperbolic groups. Topology, 29, 1990, 345-388. | DOI | MR | Zbl

[27] A. Connes, Cyclic cohomology and the transverse fundamental class of a foliation. In: Geometric methods in operator algebras (Kyoto, 1983). Pitman Res. Notes in Math., 123, Longman, Harlow 1986, 52-144. | MR

[28] B. Riemann, Mathematical Werke. Dover, New York 1953.

[29] S. Weinberg, Gravitation and Cosmolog. John Wiley and Sons, New York - London 1972.

[30] J. Dixmier, Existence de traces non normales. C.R. Acad. Sci. Paris, ser. A-B, 262, 1966. | MR | Zbl

[31] M. Wodzicki, Noncommutative residue. Part I. Fundamentals K-theory, arithmetic and geometry. Lecture Notes in Math., 1289, Springer-Verlag, Berlin 1987. | DOI | MR | Zbl

[32] J. Milnor - D. Stasheff, Characteristic classes. Ann. of Math. Stud., Princeton University Press, Princeton, N.J. 1974. | MR

[33] D. Sullivan, Geometric periodicity and the invariants of manifolds. Lecture Notes in Math., 197, Springer-Verlag, 1971. | MR | Zbl

[34] B. Lawson - M. L. Michelson, Spin Geometry. Princeton 1989. | MR

[35] A. Connes, Entire cyclic cohomology of Banach algebras and characters of $\theta$ summable Fredholm modules. K-theory, 1, 1988, 519-548. | DOI | MR | Zbl

[36] A. Jaffe - A. Lesniewski - K. Osterwalder, Quantum K-theory: I. The Chem character. Comm. Math. Phys., 118, 1988, 1-14. | MR | Zbl

[37] A. Connes - H. Moscovici, The local index formula in noncommutative geometry. Geom. Funct. Anal., 5, 1995, 174-243. | fulltext EuDML | DOI | MR | Zbl

[38] A. Connes, Noncommutative geometry. Academic Press, San Diego Cal. 1994. | MR

[39] A. Connes - H. Moscovici, Hopf Algebras, Cyclic Cohomology and the Transverse Index Theorem. Comm. Math. Phys., 198, 1998, 199-246. | DOI | MR | Zbl

[40] A. Connes, $C^{\star}$-algèbres et géométrie differentielle. C.R. Acad. Sci. Paris, Ser. A-B, 290, 1980, A599-A604. | MR

[41] A. Connes - H. Moscovici, Cyclic Cohomology and Hopf Algebras. Letters Math. Phys., 48, 1, 1999, 97-108. | DOI | MR

[42] D. Kreimer, On the Hopf algebra structure of perturbative Quantum Field Theory. Adv. Theor. Math. Phys., 2, 2, 1998, 303-334; q-alg/9707029. | DOI | MR

[43] D. Kreimer, On overlapping divergencies. Comm. Math. Phys., 204, 1999, 669-689; hep-th/9810022. | DOI | MR | Zbl

[44] D. Kreimer, Chen's iterated integral represents the operator product expansion. Adv. Theor. Math. Phys., 3, 3, 1999, to appear; hep-th/9901099. | DOI | MR | Zbl

[45] D. Kreimer - R. Delbourgo, Using the Hopf algebra structure of Quantum Field Theory in calculations. Phys. Rev., D 60, 1999, 105025-1-105025-14; hep-th/9903249. | DOI | MR

[46] A. Connes - D. Kreimer, Hopf algebras, Renormalization and Noncommutative Geometry. Comm. Math. Phys., 199, 1998, 203-242; hep-th/9808042. | DOI | MR | Zbl

[47] A. Connes - D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem. J. High Energy Phys., 09, 1999, 024; hep-th/9909126. | DOI | MR | Zbl

[48] A. Connes - D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem I. the Hopf algebra structure of graphs and the main theorem. Comm. Math. Phys., 210, 1, 2000, 249-273; hep-th/9912092. | DOI | MR | Zbl

[49] A. Connes - D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem II. The $\beta$ function, diffeomorphisms and the renormalization group, hep-th/0003188. | Zbl

[50] A. Connes, Gravity coupled with matter and foundation of noncommutative geometry. Comm. Math. Phys., 182, 1996, 155-176. | MR | Zbl

[51] W. Kalau - M. Walze, Gravity, noncommutative geometry and the Wodzicki residue. J. of Geom. and Phys., 16, 1995, 327-344. | DOI | MR | Zbl

[52] D. Kastler, The Dirac operator and gravitation. Comm. Math. Phys., 166, 1995, 633-643. | MR | Zbl

[53] A. Connes, Noncommutative geometry and reality. Journal of Math. Physics, 36, n.11, 1995, 6194-6231. | DOI | MR | Zbl

[54] M. A. Rieffel, Morita equivalence for $C^{\star}$-algebras and $W^{\star}$-algebras. J. Pure Appl. Algebra, 5, 1974, 51-96. | DOI | MR

[55] M. Gromov, Carnot-Carathéodory spaces seen from within. Preprint IHES/M/94/6. | MR | Zbl

[56] A. Chamsedine - A. Connes, Universal formulas for noncommutative geometry actions. Phys. Rev. Letters, 77, 24, 1996, 4868-4871. | DOI | MR | Zbl

[57] A. Connes, Noncommutative Geometry: The Spectral Aspect. Les Houches Session LXIV, Elsevier 1998, 643-685. | MR

[58] M. Pimsner - D. Voiculescu, Exact sequences for K groups and Ext group of certain crossed product $C^{\star}$-algebras. J. Operator Theory, 4, 1980, 93-118. | MR | Zbl

[59] M. A. Rieffel, The cancellation theorem for projective modules over irrational rotation $C^{\star}$-algebras. Proc. London Math. Soc., 47, 1983, 285-302. | DOI | MR | Zbl

[60] A. Connes - M. A. Rieffel, Yang-Mills for noncommutative two-tori. In: Operator algebras and mathematical physics (Iowa City, Iowa, 1985). Contemp. Math. Oper. Algebra Math. Phys., 62, Amer. Math. Soc., Providence, RI, 1987, 237-266. | DOI | MR

[61] A. Connes - M. R. Douglas - A. Schwartz, Noncommutative geometry and Matrix theory: compactification on tori. J. High Energy Physics, 2, 1998. | DOI | MR

[62] A. Connes, A short survey of noncommutative geometry. J. Math. Physics, 41, 2000. | DOI | MR | Zbl