Diophantine Equations in Low Dimensions
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 11 (2000) no. S1, pp. 11-29.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

This lecture is a survey of recent results in the theory of diophantine equations, especially for dimension 1. The unit equation and its generalizations are examined in detail, as well as Baker's theory and the consequences of the abc-conjecture.
@article{RLIN_2000_9_11_S1_a2,
     author = {Bombieri, Enrico},
     title = {Diophantine {Equations} in {Low} {Dimensions}},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {11--29},
     publisher = {mathdoc},
     volume = {Ser. 9, 11},
     number = {S1},
     year = {2000},
     zbl = {1149.11306},
     mrnumber = {1839739},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_S1_a2/}
}
TY  - JOUR
AU  - Bombieri, Enrico
TI  - Diophantine Equations in Low Dimensions
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2000
SP  - 11
EP  - 29
VL  - 11
IS  - S1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_S1_a2/
LA  - en
ID  - RLIN_2000_9_11_S1_a2
ER  - 
%0 Journal Article
%A Bombieri, Enrico
%T Diophantine Equations in Low Dimensions
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2000
%P 11-29
%V 11
%N S1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_S1_a2/
%G en
%F RLIN_2000_9_11_S1_a2
Bombieri, Enrico. Diophantine Equations in Low Dimensions. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 11 (2000) no. S1, pp. 11-29. http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_S1_a2/

[1] A. Baker, Linear forms in the logarithms of algebraic numbers I. Mathematika, 13, 1966, 204-216. | DOI | MR | Zbl

[2] A. Baker - G. Wüstholz, Logarithmic forms and group varieties. J. reine angew. Math., 442, 1993, 19-62. | fulltext EuDML | DOI | MR | Zbl

[3] G.V. Belyi, On the Galois extensions of the maximal cyclotomic field. Izv. Akad. Nauk SSSR, 1979, 267-276 (in Russian). | MR | Zbl

[4] F. Beukers - H.P. Schlickewei, The equation $x + y = 1$ in finitely generated groups. Acta Arithm., 78, 1996, 189-199. | fulltext EuDML | DOI | MR | Zbl

[5] Yu. BILU, Limit distribution of small points on algebraic tori. Duke Math. J., 89, 1997, 465-476. | DOI | MR | Zbl

[6] E. Bombieri, Effective diophantine approximation on $\mathbb{G}_{m}$. Ann. Sc. Norm. Sup. Pisa Cl. Sc., s. 4, 20, 1993,61-89. | fulltext EuDML | MR | Zbl

[7] E. Bombieri - P. B. Cohen, Effective diophantine approximation on $\mathbb{G}_{m}$ II. Ann. Sc. Norm. Sup. Pisa Cl. Sc., s. 4, 24, 1997, 205-225. | fulltext EuDML | MR | Zbl

[8] E. Bombieri - U. Zannier, Algebraic points on subvarieties of $\mathbb{G}^{n}_{m}$. Int. Math. Res. Notices, 7, 1995, 333-347. | DOI | MR | Zbl

[9] N. D. Elkies, ABC implies Mordell. Int. Math. Res. Notices, 1, 1991, 127-132. | DOI | MR

[10] J.-H. Evertse - H. P. Schlickewei - W.M. Schmidt, Linear equations in variables which lie in a multiplicative group. Annals of Math., submitted. | DOI | MR | Zbl

[11] G. Faltings, Diophantine approximation an Abelian varieties. Annals of Math., 133, 1991, 549-576. | DOI | MR | Zbl

[12] N. I. Feldman, An effective refinement of the exponent in Liouville's theorem. Izv. Akad. Nauk SSSR, 35, 1971, 973-990; Math. USSR Izv., 5, 1971, 985-1002. | MR

[13] A. Granville, ABC allows us to count squarefrees. Int. Math. Res. Notices, 19, 1998, 991-1009. | DOI | MR | Zbl

[14] M. Langevin, Sur quelques conséquences de la conjecture (abc) en arithmétique et logique (Symposium on Diophantine Problems, Boulder, Co., 1994). Rocky Mountain J. Math., 26, 1996, 1031-1042. | DOI | MR

[15] G. Rémond, Décompte dans une conjecture de Lang. Inventiònes Math., to appear. | DOI | MR

[16] W. W. Stothers, Polynomial identities and Hauptmoduln. Quart. J. Math. Oxford, s. (2), 32, 1981, 349-370. | DOI | MR | Zbl

[17] L. Szpiro - E. Ullmo - S. Zhang, Equidistribution des petits points. Inventiones Math., 127, 1997, 337-347. | DOI | MR | Zbl

[18] R. Taylor - A. Wiles, Ring-theoretic properties of certain Hecke algebras. Annals of Math., 142, 1995, 553-572. | DOI | MR | Zbl

[19] A. Thue, Über Annäherungwerte algebraischer Zahlen. J. reine angew. Math., 135, 1909, 284-305. | fulltext EuDML | DOI | MR

[20] R. Tijdeman, On the equation of Catalan. Acta Arithm., 29, 1976, 197-209. | fulltext EuDML | DOI | MR

[21] P. Vojta, A more general ABC conjecture. Int. Math. Res. Notices, 21, 1998, 1103-1116. | DOI | MR | Zbl

[22] A. Wiles, Modular elliptic curves and Fermat's Last Theorem. Annals of Math., 142, 1995, 443-551; Acta Arithm., 89, 1999, 337-378. | DOI | MR | Zbl

[23] K. Yu, p-adic logarithmic forms and group varieties. Acta Arithm., 89, 1999, 337-378. | fulltext EuDML | DOI | MR | Zbl

[24] S. Zhang, Positive line bundles on arithmetic varieties. J. Amer. Math. Soc., 8, 1995, 187-221. | DOI | MR | Zbl