Diffusion time and splitting of separatrices for nearly integrable isochronous Hamiltonian systems
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 11 (2000) no. 4, pp. 235-243.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We consider the problem of Arnold’s diffusion for nearly integrable isochronous Hamiltonian systems. We prove a shadowing theorem which improves the known estimates for the diffusion time. We also justify for three time scales systems that the splitting of the separatrices is correctly predicted by the Poincaré-Melnikov function.
Consideriamo il problema della diffusione di Arnold per sistemi Hamiltoniani isocroni quasi-integrabili. Dimostriamo un teorema di shadowing che migliora le stime sul tempo di diffusione sinora note. Giustifichiamo inoltre, per sistemi a tre scale temporali, che lo splitting delle separatrici è correttamente previsto dalla funzione di Poincaré-Melnikov.
@article{RLIN_2000_9_11_4_a0,
     author = {Berti, Massimiliano and Bolle, Philippe},
     title = {Diffusion time and splitting of separatrices for nearly integrable isochronous {Hamiltonian} systems},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {235--243},
     publisher = {mathdoc},
     volume = {Ser. 9, 11},
     number = {4},
     year = {2000},
     zbl = {1009.37044},
     mrnumber = {1614571},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_4_a0/}
}
TY  - JOUR
AU  - Berti, Massimiliano
AU  - Bolle, Philippe
TI  - Diffusion time and splitting of separatrices for nearly integrable isochronous Hamiltonian systems
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2000
SP  - 235
EP  - 243
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_4_a0/
LA  - en
ID  - RLIN_2000_9_11_4_a0
ER  - 
%0 Journal Article
%A Berti, Massimiliano
%A Bolle, Philippe
%T Diffusion time and splitting of separatrices for nearly integrable isochronous Hamiltonian systems
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2000
%P 235-243
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_4_a0/
%G en
%F RLIN_2000_9_11_4_a0
Berti, Massimiliano; Bolle, Philippe. Diffusion time and splitting of separatrices for nearly integrable isochronous Hamiltonian systems. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 11 (2000) no. 4, pp. 235-243. http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_4_a0/

[1] A. Ambrosetti - M. Badiale, Homoclinics: Poincaré-Melnikov type results via a variational approach. C. R. Acad. Sci. Paris, t. 323, Série I, 1996, 753-758; Ann. Inst. Henri Poincaré - Analyse nonlin., vol. 15, n. 2, 1998, 233-252. | fulltext EuDML | fulltext mini-dml | DOI | MR | Zbl

[2] S. Angenent, A variational interpretation of Melnikov’s function and exponentially small separatrix splitting. In: D.A. Salamon (ed.), Symplectic geometry. London Math. Soc., Lecture Notes Series, vol. 192, Cambridge University Press 1993. | MR | Zbl

[3] V.I. Arnold, Instability of dynamical systems with several degrees of freedom. Sov. Math. Dokl., 6, 1964, 581-585. | Zbl

[4] M. Berti - P. Bolle, Homoclinics and Chaotic Behaviour for Perturbed Second order Systems. Annali di Mat. Pura e Applicata, (IV), vol. CLXXVI, 1999, 323-378. | DOI | MR | Zbl

[5] M. Berti - P. Bolle, Variational construction of homoclinics and chaos in presence of a saddle-saddle equilibrium. Annali della Scuola Normale Superiore di Pisa, (4) 27, fasc. 2, 1998, 331-377; Rend. Mat. Acc. Lincei, s. 9, v. 9, 1998, 167-175. | fulltext bdim | fulltext EuDML | fulltext mini-dml | MR | Zbl

[6] M. Berti - P. Bolle, Arnold’s diffusion for nearly integrable isochronous Hamiltonian systems. Preprint SISSA 98/2000/M, october 2000. | fulltext mini-dml | MR

[7] U. Bessi - L. Chierchia - E. Valdinoci, Upper Bounds on Arnold Diffusion Time via Mather theory. Journal de Mathématiques Pures et Appliquées, neuvième série, to appear. | DOI | MR | Zbl

[8] L. Chierchia - G. Gallavotti, Drift and diffusion in phase space. Ann. Inst. Henri Poincaré, Phys. Théor., 60, 1994, 1-144; see also Erratum in vol. 68, 1998, 135. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[9] J. Cresson, Conjecture de Chirikov et Optimalité des exposants de stabilité du théorème de Nekhoroshev. Dép. de Mathématiques de Besançon, 1998, preprint.

[10] A. Delshams - V.G. Gelfreich - V. G. Jorba - T. M. Seara, Exponentially small splitting of separatrices under fast quasi-periodic forcing. Comm. Math. Ph., 189, 1997, 35-71. | DOI | MR | Zbl

[11] G. Gallavotti, Arnold’s Diffusion in Isochronous Systems. Mathematical Physics, Analysis and Geometry, 1, 1999, 295-312. | DOI | MR | Zbl

[12] G. Gallavotti - G. Gentile - V. Mastropietro, Separatrix splitting for systems with three time scales. Commun. Math. Phys., 202, 1999, 197-236. | DOI | MR | Zbl

[13] G. Gallavotti - G. Gentile - V. Mastropietro, A possible counter example to a paper by Rudnew and Wiggins. Physica D, 137, 2000, 202-204. | DOI | MR | Zbl

[14] P. Lochak, Arnold diffusion: a compendium of remarks and questions. Proceedings of 3DHAM’s Agaro, 1995. | Zbl

[15] P. Lochak - J.P. Marco - D. Sauzin, On the splitting of invariant manifolds in multidimensional Hamiltonian systems. Université Jussieu, preprint. | Zbl

[16] J.P. Marco, Transitions le long des chaȋnes de tores invariants pour les systèmes hamiltoniens analytiques. Ann. Inst. Henri Poincaré, vol. 64, 1995, 205-252. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[17] A. Pumarino - C. Valls, Three time scales systems exhibiting persisent Arnold’s diffusion. Preprint; www.ma.utexas.edu/mp arc.