Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_2000_9_11_3_a4, author = {Bombieri, Enrico}, title = {Remarks on {Weil{\textquoteright}s} quadratic functional in the theory of prime numbers, {I}}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {183--233}, publisher = {mathdoc}, volume = {Ser. 9, 11}, number = {3}, year = {2000}, zbl = {1008.11034}, mrnumber = {1702145}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_3_a4/} }
TY - JOUR AU - Bombieri, Enrico TI - Remarks on Weil’s quadratic functional in the theory of prime numbers, I JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2000 SP - 183 EP - 233 VL - 11 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_3_a4/ LA - en ID - RLIN_2000_9_11_3_a4 ER -
%0 Journal Article %A Bombieri, Enrico %T Remarks on Weil’s quadratic functional in the theory of prime numbers, I %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2000 %P 183-233 %V 11 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_3_a4/ %G en %F RLIN_2000_9_11_3_a4
Bombieri, Enrico. Remarks on Weil’s quadratic functional in the theory of prime numbers, I. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 11 (2000) no. 3, pp. 183-233. http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_3_a4/
[1] Complements to Li’s criterion for the Riemann Hypothesis. J. Number Theory, 77, 1999, 274-287. | DOI | MR | Zbl
- ,[2] Summation Formulae and Self-reciprocal Functions (III). Quarterly J. Math., 13, 1942, 30-39. | MR | Zbl
,[3] The distribution of prime numbers. Cambridge Tracts, 30, Cambridge 1932. | Jbk 58.0193.02 | Zbl
,[4] The positivity of a sequence of numbers and the Riemann Hypothesis. J. Number Theory, 65, 1997, 325-333. | DOI | MR | Zbl
,[5] On Hermitian Forms attached to Zeta Functions. In: N. Kurokawa - T. Sunada (eds.), Zeta Fuctions in Geometry. Advanced Studies in Pure Mathematics, 21, Mathematical Society of Japan, Kinokuniya, Tokyo 1992, 281-325. | MR | Zbl
,[6] Sur les "formules explicites" de la théorie des nombres premiers. Meddelanden Från Lunds Univ. Mat. Sem. (dedié a M. Riesz), 1952, 252-265. | MR | Zbl
,[7] A Course of Modern Analysis. Fourth edition, Cambridge University Press, Cambridge 1952. | Jbk 45.0433.02 | MR | Zbl
- ,