Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_2000_9_11_3_a2, author = {Acerbi, Emilio and Mingione, Giuseppe}, title = {Functionals with $p(x)$ growth and regularity}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {169--174}, publisher = {mathdoc}, volume = {Ser. 9, 11}, number = {3}, year = {2000}, zbl = {1008.49030}, mrnumber = {1669915}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_3_a2/} }
TY - JOUR AU - Acerbi, Emilio AU - Mingione, Giuseppe TI - Functionals with $p(x)$ growth and regularity JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2000 SP - 169 EP - 174 VL - 11 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_3_a2/ LA - en ID - RLIN_2000_9_11_3_a2 ER -
%0 Journal Article %A Acerbi, Emilio %A Mingione, Giuseppe %T Functionals with $p(x)$ growth and regularity %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2000 %P 169-174 %V 11 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_3_a2/ %G en %F RLIN_2000_9_11_3_a2
Acerbi, Emilio; Mingione, Giuseppe. Functionals with $p(x)$ growth and regularity. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 11 (2000) no. 3, pp. 169-174. http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_3_a2/
[1] Regularity results for a class of functionals with nonstandard growth. Arch. Rational Mech. Anal., to appear. | Zbl
- ,[2] Regularity for a class of quasiconvex functionals with nonstandard growth. To appear. | fulltext mini-dml | Zbl
- ,[3] The Harnack inequality and the Hölder property of solutions of nonlinear elliptic equations with a nonstandard growth condition. Differential Equations, 33, 1997, 1653-1663. | MR | Zbl
,[4] Hölder continuity of the gradient of $p(x)$-harmonic mappings. C. R. Acad. Sci. Paris, 328, 1999, 363-368. | DOI | MR | Zbl
- ,[5] A class of De Giorgi type and Hölder continuity. Nonlinear Anal. T.M.A., 36 A, 1999, 295-318. | DOI | MR | Zbl
- ,[6] Regularity for some scalar variational problems under general growth conditions. J. Optim. Theory Appl., 90, 1996, 161-181. | DOI | MR | Zbl
,[7] On some variational problems. Russian J. Math. Physics, 5, 1997, 105-116. | MR | Zbl
,