Commutators and linearizations of isochronous centers
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 11 (2000) no. 2, pp. 81-98.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We study isochronous centers of some classes of plane differential systems. We consider systems with constant angular speed, both with homogeneous and nonhomogenous nonlinearities. We show how to construct linearizations and first integrals of such systems, if a commutator is known. Commutators are found for some classes of systems. The results obtained are used to prove the isochronicity of some classes of centers, and to find first integrals for a class of Liénard equations with isochronous centers.
Si studiano centri isocroni di alcune classi di sistemi differenziali piani. Si considerano sistemi con velocità angolare costante, sia con nonlinearità omogenee, sia con nonlinearità non omogenee. Si mostra come, a partire da un commutatore, sia possibile costruire una linearizzazione ed un integrale primo. Si trovano commutatori per alcune classi di sistemi. I risultati ottenuti vengono applicati per dimostrare l’isocronia di alcune classi di centri, e per trovare integrali primi per una classe di equazioni di Liénard con centri isocroni.
@article{RLIN_2000_9_11_2_a1,
     author = {Mazzi, Luisa and Sabatini, Marco},
     title = {Commutators and linearizations of isochronous centers},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {81--98},
     publisher = {mathdoc},
     volume = {Ser. 9, 11},
     number = {2},
     year = {2000},
     zbl = {0973.34020},
     mrnumber = {1747197},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_2_a1/}
}
TY  - JOUR
AU  - Mazzi, Luisa
AU  - Sabatini, Marco
TI  - Commutators and linearizations of isochronous centers
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2000
SP  - 81
EP  - 98
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_2_a1/
LA  - en
ID  - RLIN_2000_9_11_2_a1
ER  - 
%0 Journal Article
%A Mazzi, Luisa
%A Sabatini, Marco
%T Commutators and linearizations of isochronous centers
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2000
%P 81-98
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_2_a1/
%G en
%F RLIN_2000_9_11_2_a1
Mazzi, Luisa; Sabatini, Marco. Commutators and linearizations of isochronous centers. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 11 (2000) no. 2, pp. 81-98. http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_2_a1/

[1] J. Chavarriga - M. Sabatini, A survey of isochronous centers. Qualitative Theory of Dynamical Systems, 1, 1999, 1-70. | DOI | MR

[2] C. J. Christopher - J. Devlin, Isochronous centers in planar polynomial systems. SIAM Jour. Math. Anal., 28, 1997, 162-177. | DOI | MR | Zbl

[3] C. B. Collins, Conditions for a center in a simple class of cubic systems. Diff. Int. Eq., 10, 1997, 333-356. | MR | Zbl

[4] R. Conti, On isochronous centers of cubic systems. Revue Roumaine de Mathématiques Pures et Appliquées, 39, 4, 1994, 295-301. | MR | Zbl

[5] R. Conti, Uniformly isochronous centers of polynomial systems in $ \mathbb{R}^{2} $. In: K.D. Elworthy - W. Norrie Everitt - E. Bruce Lee (eds.), Differential equations, dynamical systems, and control science. Lecture Notes in Pure and Appl. Math., 152, M. Dekker, New York 1994, 21-31. | MR | Zbl

[6] R. Conti, Centers of planar polynomial systems. A review. Le Matematiche, 53, 2, 1998, 207-240. | MR | Zbl

[7] G. F. D. Duff, Limit cycles and rotated vector fields. Ann. Math., 57, 1953, 15-31. | MR | Zbl

[8] M. Farkas, Periodic Motions. Springer-Verlag, Berlin 1994. | MR | Zbl

[9] A. Gasull - A. Guillamon - V. Mãnosa, Centre and isochronicity conditions for systems with homogeneous nonlinearities. In: M. Sofonea - J.N. Corvellec (eds.), Proceedings of the $ 2^{nd} $ 2 n ⁢ d Catalan Days of Applied Mathematics, Presses Univ. de Perpignan, Perpignan, France, 1995, 105-116. | MR | Zbl

[10] W. S. Loud, Behavior of the period of solutions of certain plane autonomous systems near centers. Contr. Diff. Eq., III, 1, 1964, 21-36. | MR | Zbl

[11] P. Mardešić - L. Moser-Jauslin - C. Rousseau, Darboux linearization and isochronous centers with a rational first integral. J. Differential Equations, 134, 1997, 216-268. | DOI | MR | Zbl

[12] P. Mardešić - C. Rousseau - B. Toni, Linearization of isochronous centers. J. Differential Equations, 121, 1995, 67-108. | DOI | MR | Zbl

[13] I. I. Pleshkan, New methods for investigating the isochronism of two differential equations. Diff. Uravneniya, V, 1969, 1083-1090 (in Russian). | Zbl

[14] M. Sabatini, Characterizing isochronous centers by Lie brackets. Diff. Eq. Dyn. Syst., 5, 1997, 91-99. | MR | Zbl

[15] M. Sabatini, Dynamics of commuting systems on two-dimensional manifolds. Ann. Mat. Pura Appl., CLXXIII (IV), 1997, 213-232. | DOI | MR | Zbl

[16] M. Sabatini, On the period function of Liénard systems. J. Differential Equations, 152, 1999, 467-487. | DOI | MR | Zbl

[17] M. Villarini, Regularity properties of the period function near a center of a planar vector field. Nonlinear Analysis, T.M.A., 19, 1992, 787-803. | DOI | MR | Zbl

[18] M. Villarini, Smooth linearizations of centers. To appear. | fulltext mini-dml | Zbl