Positive solutions for some quasilinear elliptic equations with natural growths
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 11 (2000) no. 1, pp. 31-39.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We shall prove an existence result for a class of quasilinear elliptic equations with natural growth. The model problem is $$ \begin{cases} - \text{div} ((1+ |u|^{r}) \nabla u) + |u|^{m-2} u |\nabla u|^{2} = f \quad \text{in} \, \Omega \\ u = 0 \text{su} \, \partial\Omega. \end{cases} $$
È provato un teorema di esistenza di soluzioni per una classe di equazioni ellittiche quasi-lineari, con coefficienti a crescite naturali (come suggerito dal Calcolo delle variazioni). Il problema modello è il seguente $$ \begin{cases} - \text{div} ((1+ |u|^{r}) \nabla u) + |u|^{m-2} u |\nabla u|^{2} = f \quad \text{in} \, \Omega \\ u = 0 \text{su} \, \partial\Omega. \end{cases} $$
@article{RLIN_2000_9_11_1_a4,
     author = {Boccardo, Lucio},
     title = {Positive solutions for some quasilinear elliptic equations with natural growths},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {31--39},
     publisher = {mathdoc},
     volume = {Ser. 9, 11},
     number = {1},
     year = {2000},
     zbl = {0970.35061},
     mrnumber = {1354907},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_1_a4/}
}
TY  - JOUR
AU  - Boccardo, Lucio
TI  - Positive solutions for some quasilinear elliptic equations with natural growths
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2000
SP  - 31
EP  - 39
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_1_a4/
LA  - en
ID  - RLIN_2000_9_11_1_a4
ER  - 
%0 Journal Article
%A Boccardo, Lucio
%T Positive solutions for some quasilinear elliptic equations with natural growths
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2000
%P 31-39
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_1_a4/
%G en
%F RLIN_2000_9_11_1_a4
Boccardo, Lucio. Positive solutions for some quasilinear elliptic equations with natural growths. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 11 (2000) no. 1, pp. 31-39. http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_1_a4/

[1] P. Benilan - L. Boccardo - T. Gallouët - R. Gariepy - M. Pierre - J. L. Vazquez, An $ L^{1} $-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22, 1995, 241-273. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[2] A. Bensoussan - L. Boccardo - F. Murat, On a nonlinear partial differential equation having natural growth terms and unbounded solution. Ann. Inst. H. Poincaré Anal. Non Linéaire, 5, 1988, 347-364. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[3] L. Boccardo, Calcolo delle Variazioni. Roma 1 University PhD course, 1996.

[4] L. Boccardo, Some nonlinear Dirichlet problems in $ L^{1} $ involving lower order terms in divergence form. In: A. Alvino et al. (eds), Progress in elliptic and parabolic partial differential equations (Capri, 1994). Pitman Res. Notes Math. Ser., 350, Longman, Harlow 1996, 43-57. | MR | Zbl

[5] L. Boccardo - T. Gallouët, Strongly nonlinear elliptic equations having natural growth terms and $ L^{1} $ data. Nonlinear Anal., 19, 1992, 573-579. | DOI | MR | Zbl

[6] L. Boccardo - T. Gallouët - L. Orsina, Existence and nonexistence of solutions for some nonlinear elliptic equations. J. Anal. Math., 73, 1997, 203-223. | DOI | MR | Zbl

[7] L. Boccardo - F. Murat - J.-P. Puel, Existence de solutions non bornées pour certaines équations quasi-lineaires. Portugal. Math., 41, 1982, 507-534. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[8] L. Boccardo - F. Murat - J.-P. Puel, $ L^{\infty} $ estimate for some nonlinear elliptic partial differential equations and application to an existence result. SIAM J. Math. Anal., 23, 1992, 326-333. | DOI | MR | Zbl

[9] H. Brezis - F. E. Browder, Some properties of higher order Sobolev spaces. J. Math. Pures Appl., 61, 1982, 245-259. | MR | Zbl

[10] H. Brezis - L. Nirenberg, Removable singularities for nonlinear elliptic equations. Topol. Methods Nonlinear Anal., 9, 1997, 201-219. | MR | Zbl

[11] B. Dacorogna, Direct methods in the calculus of variations. Applied Mathematical Sciences, 78. Springer-Verlag, Berlin-New York 1989. | MR | Zbl

[12] T. Del Vecchio, Strongly nonlinear problems with Hamiltonian having natural growth. Houston J. Math., 16, 1990, 7-24. | MR | Zbl

[13] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris 1969. | Zbl

[14] A. Porretta, Some remarks on the regularity of solutions for a class of elliptic equations with measure data. Preprint, Dip. Mat. Roma 1. | MR | Zbl

[15] A. Porretta, Existence for elliptic equations in $ L^{1} $ having lower order terms with natural growth. Preprint, Dip. Mat. Roma 1. | fulltext EuDML | MR | Zbl