Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_2000_9_11_1_a1, author = {Metafune, Giorgio and Pallara, Diego}, title = {Discreteness of the spectrum for some differential operators with unbounded coefficients in \( {\mathbb{R}^{n}} \)}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {9--19}, publisher = {mathdoc}, volume = {Ser. 9, 11}, number = {1}, year = {2000}, zbl = {0982.35078}, mrnumber = {1343161}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_1_a1/} }
TY - JOUR AU - Metafune, Giorgio AU - Pallara, Diego TI - Discreteness of the spectrum for some differential operators with unbounded coefficients in \( \mathbb{R}^{n} \) JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2000 SP - 9 EP - 19 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_1_a1/ LA - en ID - RLIN_2000_9_11_1_a1 ER -
%0 Journal Article %A Metafune, Giorgio %A Pallara, Diego %T Discreteness of the spectrum for some differential operators with unbounded coefficients in \( \mathbb{R}^{n} \) %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2000 %P 9-19 %V 11 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_1_a1/ %G en %F RLIN_2000_9_11_1_a1
Metafune, Giorgio; Pallara, Diego. Discreteness of the spectrum for some differential operators with unbounded coefficients in \( \mathbb{R}^{n} \). Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 11 (2000) no. 1, pp. 9-19. http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_1_a1/
[1] On the Ornstein-Uhlenbeck operator in spaces of continuous functions. J. Funct. Anal., 131, 1995, 94-114. | DOI | MR | Zbl
- ,[2] Ergodicity for infinite dimensional systems. Cambridge U. P., 1996. | DOI | MR | Zbl
- ,[3] Heat kernels and spectral theory. Cambridge U. P., 1989. | DOI | MR | Zbl
,[4] Spectral theory and differential operators. Cambridge U. P., 1995. | DOI | MR | Zbl
,[5] Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet laplacians. J. Funct. Anal., 59, 1984, 335-395. | DOI | MR | Zbl
- ,[6] \( L^{1} \) properties of intrinsic Schrödinger semigroups. J. Funct. Anal., 65, 1986, 126-146. | DOI | MR | Zbl
- ,[7] Spectral theory and differential operators. Oxford U.P., 1990. | Zbl
- ,[8] The uncertainty principle. Bull. Am. Math. Soc., 9, 1983, 129-206. | fulltext mini-dml | DOI | MR | Zbl
,[9] Discreteness of spectrum for the Schrödinger operators on manifolds with bounded geometry. preprint.
- ,[10] Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in \( \mathbb{R}^{n} \). Ann. Sc. Norm. Sup. Pisa, s. IV, 24, 1997, 133-164. | fulltext EuDML | fulltext mini-dml | MR | Zbl
,[11] On the Ornstein-Uhlenbeck operator in \( L^{2} \) spaces with respect to invariant measures. Trans. Amer. Math. Soc., 349, 1997, 155-169. | DOI | MR | Zbl
,[12] Generation of smoothing semigroups by elliptic operators with unbounded coefficients in \( \mathbb{R}^{n} \). Rend. Ist. Mat. Trieste, 28, 1997, 251-279. | MR | Zbl
- ,[13] Optimal \( L^{\infty} \) and Schauder estimates for elliptic and parabolic operators with unbounded coefficients. In: G. Caristi - E. Mitidieri (eds.), Proc. Conf. Reaction-diffusion systems. Lecture notes in pure and applied mathematics, 194, M. Dekker, 1998, 217-239. | MR | Zbl
- ,[14] Trace formulas for some singular differential operators and applications. Math. Nach., to appear. | DOI | MR | Zbl
- ,[15] Conditions for the discreteness of the spectrum of self-adjoint second-order differential equations. Trudy Moskov Mat. Obšč., 2, 1953, 169-200 (in Russian). | MR
,[16] Methods of modern mathematical physics IV. Academic Press, 1978. | MR | Zbl
- ,[17] Schrödinger semigroups. Bull. Am. Math. Soc., 7, 1982, 447-526. | fulltext mini-dml | Zbl
,[18] Some quantum operators with discrete spectrum but classically continuous spectrum. Annals of Physics, 146, 1983, 209-220. | DOI | MR | Zbl
,