Discreteness of the spectrum for some differential operators with unbounded coefficients in \( \mathbb{R}^{n} \)
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 11 (2000) no. 1, pp. 9-19.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We give sufficient conditions for the discreteness of the spectrum of differential operators of the form \( A u = - \triangle u + ( \nabla F,\nabla u) \) in \( L^{2}_{\mu}(\mathbb{R}^{n}) \) where \( d \mu(x) = e^{-F(x)} dx \) and for Schrödinger operators in \( L^{2}(\mathbb{R}^{n}) \). Our conditions are also necessary in the case of polynomial coefficients.
In questa Nota si studiano operatori della forma \( A u = - \triangle u + ( \nabla F,\nabla u) \) in \( L^{2}_{\mu}(\mathbb{R}^{n}) \) con \( d \mu(x) = e^{-F(x)} dx \), e operatori di Schrödinger in \( L^{2}(\mathbb{R}^{n}) \). Si danno condizioni sufficienti affinché lo spettro di un tale operatore differenziale sia discreto. Le condizioni trovate sono anche necessarie nel caso di coefficienti polinomiali.
@article{RLIN_2000_9_11_1_a1,
     author = {Metafune, Giorgio and Pallara, Diego},
     title = {Discreteness of the spectrum for some differential operators with unbounded coefficients in \( {\mathbb{R}^{n}} \)},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {9--19},
     publisher = {mathdoc},
     volume = {Ser. 9, 11},
     number = {1},
     year = {2000},
     zbl = {0982.35078},
     mrnumber = {1343161},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_1_a1/}
}
TY  - JOUR
AU  - Metafune, Giorgio
AU  - Pallara, Diego
TI  - Discreteness of the spectrum for some differential operators with unbounded coefficients in \( \mathbb{R}^{n} \)
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2000
SP  - 9
EP  - 19
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_1_a1/
LA  - en
ID  - RLIN_2000_9_11_1_a1
ER  - 
%0 Journal Article
%A Metafune, Giorgio
%A Pallara, Diego
%T Discreteness of the spectrum for some differential operators with unbounded coefficients in \( \mathbb{R}^{n} \)
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2000
%P 9-19
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_1_a1/
%G en
%F RLIN_2000_9_11_1_a1
Metafune, Giorgio; Pallara, Diego. Discreteness of the spectrum for some differential operators with unbounded coefficients in \( \mathbb{R}^{n} \). Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 11 (2000) no. 1, pp. 9-19. http://geodesic.mathdoc.fr/item/RLIN_2000_9_11_1_a1/

[1] G. Da Prato - A. Lunardi, On the Ornstein-Uhlenbeck operator in spaces of continuous functions. J. Funct. Anal., 131, 1995, 94-114. | DOI | MR | Zbl

[2] G. Da Prato - J. Zabczyk, Ergodicity for infinite dimensional systems. Cambridge U. P., 1996. | DOI | MR | Zbl

[3] E. B. Davies, Heat kernels and spectral theory. Cambridge U. P., 1989. | DOI | MR | Zbl

[4] E. B. Davies, Spectral theory and differential operators. Cambridge U. P., 1995. | DOI | MR | Zbl

[5] E. B. Davies - B. Simon, Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet laplacians. J. Funct. Anal., 59, 1984, 335-395. | DOI | MR | Zbl

[6] E. B. Davies - B. Simon, \( L^{1} \) properties of intrinsic Schrödinger semigroups. J. Funct. Anal., 65, 1986, 126-146. | DOI | MR | Zbl

[7] D. E. Edmunds - W. D. Evans, Spectral theory and differential operators. Oxford U.P., 1990. | Zbl

[8] C. L. Fefferman, The uncertainty principle. Bull. Am. Math. Soc., 9, 1983, 129-206. | fulltext mini-dml | DOI | MR | Zbl

[9] V. Kondrat'Ev - M. Shubin, Discreteness of spectrum for the Schrödinger operators on manifolds with bounded geometry. preprint.

[10] A. Lunardi, Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in \( \mathbb{R}^{n} \). Ann. Sc. Norm. Sup. Pisa, s. IV, 24, 1997, 133-164. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[11] A. Lunardi, On the Ornstein-Uhlenbeck operator in \( L^{2} \) spaces with respect to invariant measures. Trans. Amer. Math. Soc., 349, 1997, 155-169. | DOI | MR | Zbl

[12] A. Lunardi - V. Vespri, Generation of smoothing semigroups by elliptic operators with unbounded coefficients in \( \mathbb{R}^{n} \). Rend. Ist. Mat. Trieste, 28, 1997, 251-279. | MR | Zbl

[13] A. Lunardi - V. Vespri, Optimal \( L^{\infty} \) and Schauder estimates for elliptic and parabolic operators with unbounded coefficients. In: G. Caristi - E. Mitidieri (eds.), Proc. Conf. Reaction-diffusion systems. Lecture notes in pure and applied mathematics, 194, M. Dekker, 1998, 217-239. | MR | Zbl

[14] G. Metafune - D. Pallara, Trace formulas for some singular differential operators and applications. Math. Nach., to appear. | DOI | MR | Zbl

[15] A. M. Molcanov, Conditions for the discreteness of the spectrum of self-adjoint second-order differential equations. Trudy Moskov Mat. Obšč., 2, 1953, 169-200 (in Russian). | MR

[16] M. Reed - B. Simon, Methods of modern mathematical physics IV. Academic Press, 1978. | MR | Zbl

[17] B. Simon, Schrödinger semigroups. Bull. Am. Math. Soc., 7, 1982, 447-526. | fulltext mini-dml | Zbl

[18] B. Simon, Some quantum operators with discrete spectrum but classically continuous spectrum. Annals of Physics, 146, 1983, 209-220. | DOI | MR | Zbl