Parametric representations of semi-complete vector fields on the unit balls in \( \mathbb{C}^{n} \) and in Hilbert space
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 10 (1999) no. 4, pp. 229-253.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We present several characterizations and representations of semi-complete vector fields on the open unit balls in complex Euclidean and Hilbert spaces.
Vengono presentate alcune caratterizzazioni e rappresentazioni di campi vettoriali semi-completi sulle palle unitarie aperte degli spazi complessi euclidei e di Hilbert.
@article{RLIN_1999_9_10_4_a1,
     author = {Aharonov, Dov and Elin, Mark and Reich, Simeon and Shoikhet, David},
     title = {Parametric representations of semi-complete vector fields on the unit balls in \( {\mathbb{C}^{n}} \) and in {Hilbert} space},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {229--253},
     publisher = {mathdoc},
     volume = {Ser. 9, 10},
     number = {4},
     year = {1999},
     zbl = {1036.32017},
     mrnumber = {1174816},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_4_a1/}
}
TY  - JOUR
AU  - Aharonov, Dov
AU  - Elin, Mark
AU  - Reich, Simeon
AU  - Shoikhet, David
TI  - Parametric representations of semi-complete vector fields on the unit balls in \( \mathbb{C}^{n} \) and in Hilbert space
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1999
SP  - 229
EP  - 253
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_4_a1/
LA  - en
ID  - RLIN_1999_9_10_4_a1
ER  - 
%0 Journal Article
%A Aharonov, Dov
%A Elin, Mark
%A Reich, Simeon
%A Shoikhet, David
%T Parametric representations of semi-complete vector fields on the unit balls in \( \mathbb{C}^{n} \) and in Hilbert space
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1999
%P 229-253
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_4_a1/
%G en
%F RLIN_1999_9_10_4_a1
Aharonov, Dov; Elin, Mark; Reich, Simeon; Shoikhet, David. Parametric representations of semi-complete vector fields on the unit balls in \( \mathbb{C}^{n} \) and in Hilbert space. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 10 (1999) no. 4, pp. 229-253. http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_4_a1/

[1] M. Abate, The infinitesimal generators of semigroups of holomorphic maps. Ann. Mat. Pura Appl., 161, 1992, 161-180. | DOI | MR | Zbl

[2] E. Berkson - H. Porta, Semigroups of analytic functions and composition operators. Michigan Math. J., 25, 1978, 101-115. | fulltext mini-dml | MR | Zbl

[3] C. C. Cowen - B. D. Maccluer, Composition Operators on Spaces of Analytic Functions. CRC Press, Boca Raton, FL 1995. | MR | Zbl

[4] S. Dineen, The Schwarz Lemma. Clarendon Press, Oxford 1989. | MR | Zbl

[5] T. Franzoni - E. Vesentini, Holomorphic Maps and Invariant Distances. North Holland, Amsterdam 1980. | MR | Zbl

[6] K. Goebel - S. Reich, Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings. Dekker, New York-Basel 1984. | MR | Zbl

[7] H. Hefer, Zur Funktionentheorie mehrerer Veränderlichen. Über eine Zerlegung analytischer Funktionen und die Weilsche Integraldarstellung. Math. Ann., 122, 1950, 276-278. | fulltext EuDML | MR | Zbl

[8] G. Henkin - J. Leiterer, Theory of Functions on Complex Manifolds. Birkhäuser, Basel 1984. | MR | Zbl

[9] T. L. Hayden - T. J. Suffridge, Biholomorphic maps in Hilbert space have a fixed point. Pacific J. Math., 38, 1971, 419-422. | fulltext mini-dml | MR | Zbl

[10] J. M. Isidro - L. L. Stacho, Holomorphic Automorphism Groups in Banach Spaces: An Elementary Introduction. North-Holland, Amsterdam 1984. | MR | Zbl

[11] V. Khatskevich - S. Reich - D. Shoikhet, Complex dynamical systems on bounded symmetric domains. Electronic J. Differential Equations, 19, 1997, 1-9. | fulltext EuDML | MR | Zbl

[12] R. H. Martin Jr., Differential equations on closed subsets of a Banach space. Trans. Amer. Math. Soc., 179, 1973, 399-414. | MR | Zbl

[13] R. H. Martin Jr., Nonlinear Operators and Differential Equations in Banach Spaces. Wiley, New York 1976. | MR | Zbl

[14] S. Reich, Minimal displacement of points under weakly inward pseudo-Lipschitzian mappings. Rend. Mat. Acc. Lincei, s. 8, v. 59, 1975, 40-44. | MR | Zbl

[15] S. Reich, On fixed point theorems obtained from existence theorems for differential equations. J. Math. Anal. Appl., 54, 1976, 26-36. | MR | Zbl

[16] S. Reich, Averaged mappings in the Hilbert ball. J. Math. Anal. Appl., 109, 1985, 199-206. | DOI | MR | Zbl

[17] S. Reich - D. Shoikhet, Generation theory for semigroups of holomorphic mappings. Abstract and Applied Analysis, 1, 1996, 1-44. | fulltext EuDML | fulltext mini-dml | DOI | MR | Zbl

[18] S. Reich - D. Shoikhet, Semigroups and generators on convex domains with the hyperbolic metric. Rend. Mat. Acc. Lincei, s. 9, v. 8, 1997, 231-250. | fulltext bdim | fulltext EuDML | fulltext mini-dml | MR | Zbl

[19] B.V. Shabat, Introduction to Complex Analysis Part II. Functions of Several Variables. Trans. Math. Monographs, 110, American Math. Soc., Providence, RI 1992. | MR | Zbl

[20] H. Upmeier, Jordan Algebras in Analysis, Operator Theory and Quantum Mechanics. CBMS-NSF Regional Conference Series in Math., American Math. Soc., Providence, RI 1987. | MR | Zbl