Equicontinuous families of operators generating mean periodic maps
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 10 (1999) no. 3, pp. 141-171.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The existence of mean periodic functions in the sense of L. Schwartz, generated, in various ways, by an equicontinuous group \( U \) or an equicontinuous cosine function \( C \) forces the spectral structure of the infinitesimal generator of \( U \) or \( C \). In particular, it is proved under fairly general hypotheses that the spectrum has no accumulation point and that the continuous spectrum is empty.
Si dimostra che l’esistenza di funzioni medio-periodiche nel senso di L. Schwartz, generate, in diversi modi, da un gruppo \( U \) o da una funzione coseno \( C \) equicontinui condiziona la struttura dello spettro del generatore infinitesimale di \( U \) e di \( C \). In particolare, si dimostra sotto ipotesi piuttosto generali che lo spettro è privo di punti di accumulazione e che lo spettro continuo è vuoto.
@article{RLIN_1999_9_10_3_a1,
     author = {Casarino, Valentina},
     title = {Equicontinuous families of operators generating mean periodic maps},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {141--171},
     publisher = {mathdoc},
     volume = {Ser. 9, 10},
     number = {3},
     year = {1999},
     zbl = {1026.47505},
     mrnumber = {1456602},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_3_a1/}
}
TY  - JOUR
AU  - Casarino, Valentina
TI  - Equicontinuous families of operators generating mean periodic maps
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1999
SP  - 141
EP  - 171
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_3_a1/
LA  - en
ID  - RLIN_1999_9_10_3_a1
ER  - 
%0 Journal Article
%A Casarino, Valentina
%T Equicontinuous families of operators generating mean periodic maps
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1999
%P 141-171
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_3_a1/
%G en
%F RLIN_1999_9_10_3_a1
Casarino, Valentina. Equicontinuous families of operators generating mean periodic maps. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 10 (1999) no. 3, pp. 141-171. http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_3_a1/

[1] W. Arendt - C.J.K. Batty, Almost periodic solutions of first and second order Cauchy problems. J. Diff. Eq., 137, 1997, 363-383. | DOI | MR | Zbl

[2] W. Arendt - A. Grabosch - G. Greiner - U. Groh - H.P. Lotz - U. Moustakas - R. Nagel (Ed.) - F. Neubrander - U. Schlotterbeck, One-parameter Semigroups of Positive Operators. Lecture Notes in Mathematics, n. 1184, Springer-Verlag, Berlin - Heidelberg - New York - Tokyo 1986. | MR

[3] A. Beurling, A theorem on functions defined on semigroups. Math. Scand., 1, 1953, 127-130. | fulltext EuDML | MR | Zbl

[4] H. Bohr, Almost periodic functions. Chelsea, New York 1947. | MR | Zbl

[5] T. Carleman, L’integrale de Fourier et questions qui s’y rattachent. Almqvist and Wiksell, Uppsala 1944. | MR | Zbl

[6] V. Casarino, Quasi-periodicità e uniforme continuità di semigruppi e funzioni coseno: criteri spettrali. Doctoral Dissertation, Politecnico di Torino 1998. | fulltext mini-dml

[7] V. Casarino, Spectral properties of weakly almost periodic cosine functions. Rend. Mat. Acc. Lincei, s. 9, vol. 9, 1998, 177-211. | fulltext bdim | MR | Zbl

[8] J. Delsarte, Les fonctions moyenne-périodiques. Journal de Mathématiques pures et appliquées, 14, 1935, 403-453. | Jbk 61.1185.02 | Zbl

[9] H. Fattorini, Ordinary differential equations in linear topological spaces I. J. Differential Equations, 5, 1969, 72-105. | MR | Zbl

[10] H. Fattorini, Ordinary differential equations in linear topological spaces II. J. Differential Equations, 6, 1969, 50-70. | MR | Zbl

[11] J.P. Kahane, Sur quelques problèmes d’unicité et de prolongement, relatifs aux fonctions approchables par des sommes d’exponentielles. Annales de l’Institut Fourier, 5, 1954, 39-130. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[12] J.P. Kahane, Sur les fonctions moyenne-périodiques bornées. Annales de l’Institut Fourier, 7, 1957, 293-314. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[13] J.P. Kahane, Lectures on mean periodic functions. Tata Institut for fundamental Research, Bombay 1958. | Zbl

[14] Y. Katznelson, An introduction to Harmonic Analysis. John Wiley & Sons, New York - London - Sydney - Toronto 1968. | MR | Zbl

[15] J.L. Kelley - I. Namioka, Linear topological spaces. Springer-Verlag, New York - Heidelberg - Berlin 1963. | MR | Zbl

[16] P. Koosis, On functions which are mean periodic on a half-line. Comm. Pure and Appl. Math., 10, 1957, 133-149. | MR | Zbl

[17] B. Nagy, On cosine operator functions in Banach spaces. Acta Sci. Math. (Szeged), 36, 1974, 281-290. | MR | Zbl

[18] J.M.A.M. Van Neerven, The adjoint of a semigroup of linear operators. Springer-Verlag, Berlin - Heidelberg - New York - Tokyo 1992. | MR | Zbl

[19] J.M.A.M. Van Neerven, The Asymptotic Behaviour of Semigroups of Linear Operators. Birkhäuser Verlag, Basel 1996. | DOI | MR | Zbl

[20] A. Pazy, Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, New York - Berlin - Heidelberg - Tokyo 1983. | DOI | MR | Zbl

[21] L. Schwartz, Theorie générale des fonctions moyenne-périodiques. Annals of Mathematics, 48, 1947, 857-929. | MR | Zbl

[22] M. Sova, Cosine operator functions. Rozprawy Matematyczne, XLIX, Warszawa 1966. | MR | Zbl

[23] E. Vesentini, Introduction to continuous semigroups. Scuola Normale Superiore, Pisa 1996. | MR | Zbl

[24] E. Vesentini, Spectral properties of weakly asymptotically almost periodic semigroups. Advances in Math., 128, 1997, 217-241. | DOI | MR | Zbl

[25] K. Yosida, Functional Analysis. Springer Verlag, Berlin - Heidelberg - New York 1968. | MR | Zbl