Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_1999_9_10_2_a1, author = {Maslowski, Bohdan and Seidler, Jan}, title = {On sequentially weakly {Feller} solutions to {SPDE{\textquoteright}s}}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {69--78}, publisher = {mathdoc}, volume = {Ser. 9, 10}, number = {2}, year = {1999}, zbl = {1007.60067}, mrnumber = {516812}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_2_a1/} }
TY - JOUR AU - Maslowski, Bohdan AU - Seidler, Jan TI - On sequentially weakly Feller solutions to SPDE’s JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 1999 SP - 69 EP - 78 VL - 10 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_2_a1/ LA - en ID - RLIN_1999_9_10_2_a1 ER -
%0 Journal Article %A Maslowski, Bohdan %A Seidler, Jan %T On sequentially weakly Feller solutions to SPDE’s %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 1999 %P 69-78 %V 10 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_2_a1/ %G en %F RLIN_1999_9_10_2_a1
Maslowski, Bohdan; Seidler, Jan. On sequentially weakly Feller solutions to SPDE’s. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 10 (1999) no. 2, pp. 69-78. http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_2_a1/
[1] Martingale solutions and invariant measures for stochastic evolution equations in Banach spaces. The University of Hull, Mathematics Research Reports, 11, 1998, no. 2. | Zbl
- ,[2] Infinite dimensional linear systems theory. Lecture Notes in Control and Inform. Sci., 8, Springer-Verlag, Berlin 1978. | MR | Zbl
- ,[3] Invariant measures for semilinear stochastic equations. Stochastic Anal. Appl., 10, 1992, 387-408. | DOI | MR | Zbl
- - ,[4] Stochastic equations in infinite dimensions. Cambridge University Press, Cambridge 1992. | DOI | MR | Zbl
- ,[5] Ergodicity for infinite dimensional systems. Cambridge University Press, Cambridge 1996. | DOI | MR | Zbl
- ,[6] Dynamic programming approach to stochastic evolution equations. SIAM J. Control Optim., 17, 1979, 152-174. | DOI | MR | Zbl
,[7] Semilinear stochastic evolution equations: Boundedness, stability and invariant measures. Stochastics, 12, 1984, 1-39. | DOI | MR | Zbl
,[8] Convergence in distribution of stochastic processes. Univ. Calif. Publ. Statist., 2, 1957, 207-236. | MR | Zbl
,[9] Lyapunov-type conditions for stationary distributions of diffusion processes on Hilbert spaces. Stochastics Stochastics Rep., 48, 1994, 195-225. | MR | Zbl
- ,[10] On Nemytskii’s operator and its application to the lower semicontinuity of integral functionals. Indiana Univ. Math. J., 29, 1980, 703-713. | DOI | MR | Zbl
- ,[11] Probabilistic approach to the strong Feller property. To appear. | DOI | MR | Zbl
- ,[12] An averaging principle for stochastic evolution equations. Časopis Pěst. Mat., 115, 1990, 240-263. | fulltext EuDML | MR | Zbl
- ,[13] A dynamical system in a Hilbert space with a weakly attractive nonstationary point. Math. Bohem., 118, 1993, 401-423. | fulltext EuDML | MR | Zbl
,[14] On optimal stochastic control of discrete-time systems in Hilbert space. SIAM J. Control, 13, 1975, 1217-1234. | MR | Zbl
,