On the smoothness of viscosity solutions of the prescribed Levi-curvature equation
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 10 (1999) no. 2, pp. 61-68.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this paper a \( C^{\infty} \)-regularity result for the strong viscosity solutions to the prescribed Levi-curvature equation is announced. As an application, starting from a result by Z. Slodkowski and G. Tomassini, the \( C^{\infty} \)-solvability of the Dirichlet problem related to the same equation is showed.
In questa Nota viene annunciato un teorema di regolarità \( C^{\infty} \) delle soluzioni viscose, in senso forte, dell’equazione di Levi con assegnata curvatura. Da questo teorema, e da un precedente risultato di Slodkowski e Tomassini, segue la risultibilità \( C^{\infty} \), in senso classico, del problema di Dirichlet relativo alla stessa equazione.
@article{RLIN_1999_9_10_2_a0,
     author = {Citti, Giovanna and Lanconelli, Ermanno and Montanari, Annamaria},
     title = {On the smoothness of viscosity solutions of the prescribed {Levi-curvature} equation},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {61--68},
     publisher = {mathdoc},
     volume = {Ser. 9, 10},
     number = {2},
     year = {1999},
     zbl = {1010.35024},
     mrnumber = {708370},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_2_a0/}
}
TY  - JOUR
AU  - Citti, Giovanna
AU  - Lanconelli, Ermanno
AU  - Montanari, Annamaria
TI  - On the smoothness of viscosity solutions of the prescribed Levi-curvature equation
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1999
SP  - 61
EP  - 68
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_2_a0/
LA  - en
ID  - RLIN_1999_9_10_2_a0
ER  - 
%0 Journal Article
%A Citti, Giovanna
%A Lanconelli, Ermanno
%A Montanari, Annamaria
%T On the smoothness of viscosity solutions of the prescribed Levi-curvature equation
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1999
%P 61-68
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_2_a0/
%G en
%F RLIN_1999_9_10_2_a0
Citti, Giovanna; Lanconelli, Ermanno; Montanari, Annamaria. On the smoothness of viscosity solutions of the prescribed Levi-curvature equation. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 10 (1999) no. 2, pp. 61-68. http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_2_a0/

[1] E. Bedford - B. Gaveau, Envelopes of holomorphy of certain 2-spheres in \( C^{2} \). Am. J. of Math., 105, 1983, 975-1009. | DOI | MR | Zbl

[2] G. Citti, \( C^{\infty} \) regularity of solutions of the Levi equation. Analyse non Linéaire, Annales de l’I.H.P, 15, 1998, 517-534. | fulltext EuDML | fulltext mini-dml | DOI | MR | Zbl

[3] X. Cabré - L. Caffarelli, Fully nonlinear elliptic equations. Amer. Math. Society, Providence 1995. | MR | Zbl

[4] M. G. Crandall - H. Ishii - P. L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math Soc., (N.S.), 27, 1992, 1-67. | fulltext mini-dml | DOI | MR | Zbl

[5] G. Citti - A. Montanari, Strong solutions for the Levi curvature equation. Advances in Differential Equations, to appear. | MR | Zbl

[6] G. Citti - A. Montanari, \( C^{\infty} \) regularity of solutions of an equation of Levi’s type in \( \mathbb{R}^{2n+1} \). Preprint. | DOI | MR | Zbl

[7] G. B. Folland - E. M. Stein, Estimates for the \( \bar{\partial}_{b} \) complex and analysis on the Heisenberg group. Comm. Pure Appl. Math., 20, 1974, 429-522. | MR | Zbl

[8] D. Gilgarg - N. S. Trudinger, Elliptic partial differential equations of second order. Springer-Verlag, Berlin-Heidelberg-New York-Tokio 1983. | MR | Zbl

[9] R. M. Range, Holomorphic functions and integral representations in several complex variables. Springer-Verlag, Berlin-Heidelberg-New York-Tokio 1986. | MR | Zbl

[10] Z. Slodkowski - G. Tomassini, Weak solutions for the Levi equation and envelope of holomorphy. J. Funct. Anal, 101, 4, 1991, 392-407. | DOI | MR | Zbl