A computational approach to fractures in crystal growth
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 10 (1999) no. 1, pp. 47-56.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In the present paper, we motivate and describe a numerical approach in order to detect the creation of fractures in a facet of a crystal evolving by anisotropic mean curvature. The result appears to be in accordance with the known examples of facet-breaking. Graphical simulations are included.
In questo lavoro, presentiamo e discutiamo un approccio numerico al problema di individuare la nascita di fratture in una faccia di un cristallo che si evolve per curvatura media anisotropa. I risultati sono in accordo con gli esempi noti fino ad ora di frattura di facce. Sono inoltre incluse alcune simulazioni grafiche.
@article{RLIN_1999_9_10_1_a5,
     author = {Novaga, Matteo and Paolini, Emanuele},
     title = {A computational approach to fractures in crystal growth},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {47--56},
     publisher = {mathdoc},
     volume = {Ser. 9, 10},
     number = {1},
     year = {1999},
     zbl = {1042.74041},
     mrnumber = {1350693},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_1_a5/}
}
TY  - JOUR
AU  - Novaga, Matteo
AU  - Paolini, Emanuele
TI  - A computational approach to fractures in crystal growth
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1999
SP  - 47
EP  - 56
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_1_a5/
LA  - en
ID  - RLIN_1999_9_10_1_a5
ER  - 
%0 Journal Article
%A Novaga, Matteo
%A Paolini, Emanuele
%T A computational approach to fractures in crystal growth
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1999
%P 47-56
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_1_a5/
%G en
%F RLIN_1999_9_10_1_a5
Novaga, Matteo; Paolini, Emanuele. A computational approach to fractures in crystal growth. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 10 (1999) no. 1, pp. 47-56. http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_1_a5/

[1] F. J. Almgren - J. Taylor, Flat flow is motion by crystalline curvature for curves with crystalline energies. J. Diff. Geom., 42, 1995, 1-22. | fulltext mini-dml | MR | Zbl

[2] F. J. Almgren - J. E. Taylor - L. Wang, Curvature-driven flows: a variational approach. SIAM J. Control Optim., 31, 1993, 387-437. | DOI | MR | Zbl

[3] G. Bellettini - M. Novaga, Approximation and comparison for non-smooth anisotropic motion by mean curvature in \( \mathbb{R}^{N} \). Math. Mod. Meth. Appl. Sc., to appear. | DOI | MR | Zbl

[4] G. Bellettini - M. Novaga - M. Paolini, Facet-breaking for three-dimensional crystals evolving by mean curvature. Interfaces and Free Boundaries, to appear. | DOI | MR | Zbl

[5] G. Bellettini - M. Paolini - S. Venturini, Some results on surface measures in Calculus of Variations. Ann. Mat. Pura Appl., 170, 1996, 329-359. | DOI | MR | Zbl

[6] H. Brezis, Operateurs Maximaux Monotones. North-Holland, Amsterdam 1973.

[7] J. W. Cahn - C. A. Handwerker - J. E. Taylor, Geometric models of crystal growth. Acta Metall. Mater., 40, 1992, 1443-1474.

[8] M.-H. Giga - Y. Giga, A subdifferential interpretation of crystalline motion under nonuniform driving force. Dynamical Systems and Differential Equations, 1, 1998, 276-287. | MR

[9] Y. Giga - M. E. Gurtin - J. Matias, On the dynamics of crystalline motion. Japan Journal of Industrial and Applied Mathematics, 15, 1998, 7-50. | DOI | MR

[10] J. E. Taylor, Crystalline variational problems. Bull. Amer. Math. Soc. (N.S.), 84, 1978, 568-588. | fulltext mini-dml | MR | Zbl

[11] J. E. Taylor, Geometric crystal growth in 3D via facetted interfaces. In: Computational Crystal Growers Workshop. Selected Lectures in Mathematics, Amer. Math. Soc., 1992, 111-113. | MR | Zbl

[12] J. E. Taylor, Mean curvature and weighted mean curvature. Acta Metall. Mater., 40, 1992, 1475-1485.

[13] J. Yunger, Facet Stepping and Motion By Crystalline Curvature. Ph. D. Thesis, 1998. | MR