Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_1999_9_10_1_a5, author = {Novaga, Matteo and Paolini, Emanuele}, title = {A computational approach to fractures in crystal growth}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {47--56}, publisher = {mathdoc}, volume = {Ser. 9, 10}, number = {1}, year = {1999}, zbl = {1042.74041}, mrnumber = {1350693}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_1_a5/} }
TY - JOUR AU - Novaga, Matteo AU - Paolini, Emanuele TI - A computational approach to fractures in crystal growth JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 1999 SP - 47 EP - 56 VL - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_1_a5/ LA - en ID - RLIN_1999_9_10_1_a5 ER -
%0 Journal Article %A Novaga, Matteo %A Paolini, Emanuele %T A computational approach to fractures in crystal growth %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 1999 %P 47-56 %V 10 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_1_a5/ %G en %F RLIN_1999_9_10_1_a5
Novaga, Matteo; Paolini, Emanuele. A computational approach to fractures in crystal growth. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 10 (1999) no. 1, pp. 47-56. http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_1_a5/
[1] Flat flow is motion by crystalline curvature for curves with crystalline energies. J. Diff. Geom., 42, 1995, 1-22. | fulltext mini-dml | MR | Zbl
- ,[2] Curvature-driven flows: a variational approach. SIAM J. Control Optim., 31, 1993, 387-437. | DOI | MR | Zbl
- - ,[3] Approximation and comparison for non-smooth anisotropic motion by mean curvature in \( \mathbb{R}^{N} \). Math. Mod. Meth. Appl. Sc., to appear. | DOI | MR | Zbl
- ,[4] Facet-breaking for three-dimensional crystals evolving by mean curvature. Interfaces and Free Boundaries, to appear. | DOI | MR | Zbl
- - ,[5] Some results on surface measures in Calculus of Variations. Ann. Mat. Pura Appl., 170, 1996, 329-359. | DOI | MR | Zbl
- - ,[6] Operateurs Maximaux Monotones. North-Holland, Amsterdam 1973.
,[7] Geometric models of crystal growth. Acta Metall. Mater., 40, 1992, 1443-1474.
- - ,[8] A subdifferential interpretation of crystalline motion under nonuniform driving force. Dynamical Systems and Differential Equations, 1, 1998, 276-287. | MR
- ,[9] On the dynamics of crystalline motion. Japan Journal of Industrial and Applied Mathematics, 15, 1998, 7-50. | DOI | MR
- - ,[10] Crystalline variational problems. Bull. Amer. Math. Soc. (N.S.), 84, 1978, 568-588. | fulltext mini-dml | MR | Zbl
,[11] Geometric crystal growth in 3D via facetted interfaces. In: Computational Crystal Growers Workshop. Selected Lectures in Mathematics, Amer. Math. Soc., 1992, 111-113. | MR | Zbl
,[12] Mean curvature and weighted mean curvature. Acta Metall. Mater., 40, 1992, 1475-1485.
,[13] Facet Stepping and Motion By Crystalline Curvature. Ph. D. Thesis, 1998. | MR
,