Some remarks on groups in which elements with the same \( p \)-power commute
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 10 (1999) no. 1, pp. 11-15.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this paper we characterize certain classes of groups \( G \) in which, from \( x^{p} = y^{p} \) (\( x, y \in G \), \( p \) a fixed prime), it follows that \( xy = yx \). Our results extend results previously obtained by other authors, in the finite case.
In questa Nota si caratterizzano alcune classi di gruppi \( G \) tali che da \( x^{p} = y^{p} \) (\( x, y \in G \), \( p \) primo fissato), segue \( xy = yx \). In particolare si estendono risultati precedentemente ottenuti da altri autori, nel caso finito.
@article{RLIN_1999_9_10_1_a1,
     author = {Longobardi, Patrizia and Maj, Mercede},
     title = {Some remarks on groups in which elements with the same \( p \)-power commute},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {11--15},
     publisher = {mathdoc},
     volume = {Ser. 9, 10},
     number = {1},
     year = {1999},
     zbl = {1008.20022},
     mrnumber = {1485697},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_1_a1/}
}
TY  - JOUR
AU  - Longobardi, Patrizia
AU  - Maj, Mercede
TI  - Some remarks on groups in which elements with the same \( p \)-power commute
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1999
SP  - 11
EP  - 15
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_1_a1/
LA  - en
ID  - RLIN_1999_9_10_1_a1
ER  - 
%0 Journal Article
%A Longobardi, Patrizia
%A Maj, Mercede
%T Some remarks on groups in which elements with the same \( p \)-power commute
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1999
%P 11-15
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_1_a1/
%G en
%F RLIN_1999_9_10_1_a1
Longobardi, Patrizia; Maj, Mercede. Some remarks on groups in which elements with the same \( p \)-power commute. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 10 (1999) no. 1, pp. 11-15. http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_1_a1/

[1] M. Bianchi - A. Gillio Berta Mauri - L. Verardi, Groups in which elements with the same \( p \)-power commute. Le Matematiche, Supplemento vol. LI, 1996, 53-62. | MR | Zbl

[2] N. Blackburn, Generalizations of certain elementary theorems on \( p \)-groups. Proc. London Math. Soc., 11, 1961, 1-22. | MR | Zbl

[3] L. Brailovsky - G. A. Freiman, On two-element subsets in groups. Ann. of the New York Academy of Sciences, 373, 1981, 183-190. | MR | Zbl

[4] L. Brailovsky - M. Herzog, Counting squares of two-subsets in finite groups. Ars Combinatoria, to appear. | MR | Zbl

[5] D. Bubboloni - G. Corsi, Finite \( p \)-groups in which every element of order \( p \) is central. To appear.

[6] B. Huppert, Endliche Gruppen I. Springer-Verlag, Berlin 1967. | MR | Zbl

[7] T. J. Laffey, A lemma on finite \( p \)-groups and some consequences. Proc. Camb. Phil. Soc., 75, 1974, 133-137. | MR | Zbl

[8] T. J. Laffey, Centralizers of Elementary Abelian Subgroups in Finite \( p \)-groups. J. Algebra, 51, 1978, 88-96. | MR | Zbl

[9] Mingyao Xu, The power structure of finite \( p \)-groups. Bull. Austral. Math. Soc., 36, 1987, 1-10. | DOI | MR | Zbl

[10] A. Yu. Ol'Shanskii, Geometry of Defining Relations in Groups. Nauka, Moscow 1989 (English translation: Kluwer Academic Publisher, Dordrecht 1991). | MR | Zbl

[11] D. J. S. Robinson, Finiteness conditions and generalized soluble groups. Springer-Verlag, Berlin 1972. | Zbl