Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_1999_9_10_1_a0, author = {Rossi-Doria, Olivia}, title = {A \( {\mathcal{U}_{q}} (\mathfrak{sl} (2)) \)-representation with no quantum symmetric algebra}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {5--9}, publisher = {mathdoc}, volume = {Ser. 9, 10}, number = {1}, year = {1999}, zbl = {1042.17015}, mrnumber = {802128}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_1_a0/} }
TY - JOUR AU - Rossi-Doria, Olivia TI - A \( \mathcal{U}_{q} (\mathfrak{sl} (2)) \)-representation with no quantum symmetric algebra JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 1999 SP - 5 EP - 9 VL - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_1_a0/ LA - en ID - RLIN_1999_9_10_1_a0 ER -
%0 Journal Article %A Rossi-Doria, Olivia %T A \( \mathcal{U}_{q} (\mathfrak{sl} (2)) \)-representation with no quantum symmetric algebra %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 1999 %P 5-9 %V 10 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_1_a0/ %G en %F RLIN_1999_9_10_1_a0
Rossi-Doria, Olivia. A \( \mathcal{U}_{q} (\mathfrak{sl} (2)) \)-representation with no quantum symmetric algebra. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 10 (1999) no. 1, pp. 5-9. http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_1_a0/
[1] Hopf algebras and quantum Yang-Baxter equation. Soviet. Math. Dokl., 32, 1985, 254-258. | MR | Zbl
,[2] Quantum groups. Proc. ICM, Berkeley 1986, 1, 798-820. | MR
,[3] A q-difference analogue of \( \mathcal{U}(\mathfrak{g}) \) and the Yang-Baxter equation. Lett. Math. Phys., 10, 1985, 63-69. | DOI | MR | Zbl
,[4] Quantum groups. Graduate Texts in Math., vol. 155, Springer-Verlag, New York 1995. | DOI | MR | Zbl
,[5] Quantized universal enveloping algebra, the Yang-Baxter equation and invariants of links I. LOMI, preprint 1987, no. E-4-87.
,[6] Finite-dimensional representations of the quantum analogue of the enveloping algebra of a complex simple Lie algebra. Comm. Math. Phys., 117, 1988, 581-593. | fulltext mini-dml | MR | Zbl
,