On the Cauchy problem for a class of parabolic equations with variable density
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 9 (1998) no. 4, pp. 279-298.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The well-posedness of the Cauchy problem for a class of parabolic equations with variable density is investigated. Necessary and sufficient conditions for existence and uniqueness in the class of bounded solutions are proved. If these conditions fail, sufficient conditions are given to ensure well-posedness in the class of bounded solutions which satisfy suitable constraints at infinity.
Si studia la buona posizione del problema di Cauchy per una classe di equazioni paraboliche con densità variabile. Si ricavano condizioni necessarie e sufficienti per l’esistenza e l’unicità nella classe delle soluzioni limitate. Se tali condizioni non sono verificate, si danno condizioni sufficienti a garantire la buona posizione del problema nella classe delle soluzioni limitate che all’infinito soddisfano opportune restrizioni.
@article{RLIN_1998_9_9_4_a4,
     author = {Kamin, Shoshana and Kersner, Robert and Tesei, Alberto},
     title = {On the {Cauchy} problem for a class of parabolic equations with variable density},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {279--298},
     publisher = {mathdoc},
     volume = {Ser. 9, 9},
     number = {4},
     year = {1998},
     zbl = {0926.35045},
     mrnumber = {176231},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_4_a4/}
}
TY  - JOUR
AU  - Kamin, Shoshana
AU  - Kersner, Robert
AU  - Tesei, Alberto
TI  - On the Cauchy problem for a class of parabolic equations with variable density
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1998
SP  - 279
EP  - 298
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_4_a4/
LA  - en
ID  - RLIN_1998_9_9_4_a4
ER  - 
%0 Journal Article
%A Kamin, Shoshana
%A Kersner, Robert
%A Tesei, Alberto
%T On the Cauchy problem for a class of parabolic equations with variable density
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1998
%P 279-298
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_4_a4/
%G en
%F RLIN_1998_9_9_4_a4
Kamin, Shoshana; Kersner, Robert; Tesei, Alberto. On the Cauchy problem for a class of parabolic equations with variable density. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 9 (1998) no. 4, pp. 279-298. http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_4_a4/

[1] D. G. Aronson, Uniqueness of positive weak solutions of second order parabolic equations. Ann. Polon. Math., 16, 1965, 285-303. | MR | Zbl

[2] D. G. Aronson - M. Crandall - L. A. Peletier, Stabilization of solutions in a degenerate nonlinear diffusion problem. Nonlin. Anal., 6, 1982, 1001-1022. | DOI | MR | Zbl

[3] M. Bertsch - R. Kersner - L. A. Peletier, Positivity versus localization in degenerate diffusion equations. Nonlin. Anal., 9, 1985, 987-1008. | DOI | MR | Zbl

[4] V. M. Borok - Ja. I. Zitomirskii, Cauchy problem for parabolic systems, degenerating at infinity. Zap. Mech. Mat. Fak. Chark. Gos. Univ. im Gorkogo i Cark. Mat. Obzhestva, 29, 1963, 5-15 (in Russian).

[5] S. D. Eidel'Man, Parabolic systems. North-Holland, Amsterdam 1969. | MR | Zbl

[6] D. Eidus, The Cauchy problem for the nonlinear filtration equation in an inhomogeneous medium. J. Differ. Equations, 84, 1990, 309-318. | DOI | MR | Zbl

[7] D. Eidus, The perturbed Laplace operator in a weighted \( L^{2} \). J. Funct. Anal., 100, 1991, 400-410. | DOI | MR | Zbl

[8] D. Eidus - S. Kamin, The filtration equation in a class of functions decreasing at infinity. Proc. Amer. Math. Soc., 120, 1994, 825-830. | DOI | MR | Zbl

[9] W. Feller, The parabolic differential equations and the associated semi-groups of transformations. Ann. Math., 55, 1952, 468-519. | MR | Zbl

[10] M. Freidlin, Functional integration and partial differential equations. Princeton University Press, Princeton 1985. | MR | Zbl

[11] A. Friedman, On the uniqueness of the Cauchy problem for parabolic equations. Amer. J. Math., 81, 1959, 503-511. | MR | Zbl

[12] R. Z. Hasminsky, Ergodic properties of recurrent diffusion processes and stabilization of the solution of the Cauchy problem for parabolic equations. Theory Prob. Appl., 5, 1970, 196-214 (in Russian). | MR | Zbl

[13] E. Hille, Les probabilités continues en chaîne. C.R. Acad. Sci. Paris, 230, 1950, 34-35. | MR | Zbl

[14] E. Holmgren, Sur les solutions quasianalytiques de l’équation de la chaleur. Ark. Mat., 18, 1924, 64-95. | Jbk 50.0337.02

[15] A. M. Il'In - A. S. Kalashnikov - O. A. Oleinik, Linear equations of the second order of parabolic type. Russian Math. Surveys, 17, 1962, 1-144.

[16] S. Kamin - P. Rosenau, Non-linear diffusion in a finite mass medium. Comm. Pure Appl. Math., 35, 1982, 113-127. | DOI | MR | Zbl

[17] L. I. Kamynin - B. Himtsenko, On Tikhonov-Petrowsky problem for second order parabolic equations. Sibirsky Math. J., 22, 1981, 78-109 (in Russian). | MR | Zbl

[18] A. Lunardi, Schauder theorems for linear elliptic and parabolic problems with unbounded coefficients in \( \mathbb{R}^{n} \). Studia Math., 128, 1998, 171-198. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[19] M. Murata, Non-uniqueness of the positive Cauchy problem for parabolic equations. J. Differ. Equations, 123, 1995, 343-387. | DOI | MR | Zbl

[20] I. G. Petrowsky, On some problems in the theory of partial differential equations. Usp. Mat. Nauk, 1, 1946, 44-70 (in Russian).

[21] Y. Pinchover, On uniqueness and nonuniqueness of the positive Cauchy problem for parabolic equations with unbounded coefficients. Math. Z., 223, 1996, 569-586. | fulltext EuDML | DOI | MR | Zbl

[22] R. G. Pinsky, Positive harmonic functions and diffusion. Cambridge University Press, Cambridge 1995. | DOI | MR | Zbl

[23] G. N. Smirnova, The Cauchy problem for degenerate at infinity parabolic equations. Math. Sb., 70, 1966, 591-604 (in Russian). | MR | Zbl

[24] I. M. Sonin, On the classes of uniqueness for degenerate parabolic equations. Math. Sb., 85, 1971, 459-473 (in Russian). | MR | Zbl

[25] S. Täcklind, Sur les classes quasianalytiques de solutions des équations aux derivées partielles du type parabolique. Nord. Acta Reg. Soc. Sci. Uppsal., 10, 1936, 3-55. | Jbk 62.1186.01

[26] A. N. Tikhonov, Théorèmes d’unicité pour l’équation de la chaleur. Math. Sb., 42, 1935, 199-216. | fulltext EuDML | Jbk 61.1203.05 | Zbl

[27] D. V. Widder, Positive temperatures on an infinite rod. Trans. Amer. Math. Soc., 55, 1944, 85-95. | MR | Zbl

[28] Ja. I. Zitomirski, Uniqueness classes for solutions of the Cauchy problem. Soviet. Math. Dokl., 8, 1967, 259-262. | Zbl