Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_1998_9_9_4_a3, author = {Da Prato, Giuseppe and Debussche, Arnaud}, title = {Differentiability of the transition semigroup of the stochastic {Burgers} equation, and application to the corresponding {Hamilton-Jacobi} equation}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {267--277}, publisher = {mathdoc}, volume = {Ser. 9, 9}, number = {4}, year = {1998}, zbl = {0931.37036}, mrnumber = {755001}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_4_a3/} }
TY - JOUR AU - Da Prato, Giuseppe AU - Debussche, Arnaud TI - Differentiability of the transition semigroup of the stochastic Burgers equation, and application to the corresponding Hamilton-Jacobi equation JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 1998 SP - 267 EP - 277 VL - 9 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_4_a3/ LA - en ID - RLIN_1998_9_9_4_a3 ER -
%0 Journal Article %A Da Prato, Giuseppe %A Debussche, Arnaud %T Differentiability of the transition semigroup of the stochastic Burgers equation, and application to the corresponding Hamilton-Jacobi equation %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 1998 %P 267-277 %V 9 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_4_a3/ %G en %F RLIN_1998_9_9_4_a3
Da Prato, Giuseppe; Debussche, Arnaud. Differentiability of the transition semigroup of the stochastic Burgers equation, and application to the corresponding Hamilton-Jacobi equation. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 9 (1998) no. 4, pp. 267-277. http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_4_a3/
[1] Large deviations and the Malliavin Calculus. Birkhäuser, 1984. | MR | Zbl
,[2] Some results on nonlinear optimal control problems and Hamilton-Jacobi equations in infinite dimensions. J. Funct. Anal., 90, 1990, 27-47. | DOI | MR | Zbl
- ,[3] Optimal control problems for reaction-diffusion equations by a Dynamic Programming approach. Scuola Normale Superiore, Pisa 1998, preprint.
,[4] Control of the stochastic Burgers model of turbulence. Siam Journal on Control and Optimization, to appear. | DOI | MR | Zbl
- ,[5] Stochastic Burgers equation. NoDEA, 1994, 389-402. | DOI | MR | Zbl
- - ,[6] Ergodicity for Infinite Dimensional Systems. London Mathematical Society Lecture Notes, 229, 1996. | DOI | MR | Zbl
- ,[7] Stochastic flows on Riemannian manifolds. In: M. A. Pinsky - V. Vihstutz (eds.), Diffusion processes and related problems in analysis. Birkhäuser, 1992, vol. II, 33-72. | MR | Zbl
,[8] Deterministic and Stochastic Optimal Control. Springer-Verlag, 1975. | MR | Zbl
- ,[9] Regularity of solutions of a second order Hamilton-Jacobi equation and application to a control problem. Commun. in partial differential equations, 20, 1995, 775-826. | DOI | MR | Zbl
,