Differentiability of the transition semigroup of the stochastic Burgers equation, and application to the corresponding Hamilton-Jacobi equation
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 9 (1998) no. 4, pp. 267-277.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We consider a stochastic Burgers equation. We show that the gradient of the corresponding transition semigroup \( P_{t} \varphi \) does exist for any bounded \( \varphi \); and can be estimated by a suitable exponential weight. An application to some Hamilton-Jacobi equation arising in Stochastic Control is given.
Si considera un’equazione di Burgers stocastica. Si prova che il gradiente del semigruppo di transizione corrispondente \( P_{t} \varphi \) esiste per ogni \( \varphi \) limitata e che può essere stimato con un opportuno peso esponenziale. Viene data un’applicazione ad una equazione di Hamilton-Jacobi che interviene in un problema di controllo stocastico.
@article{RLIN_1998_9_9_4_a3,
     author = {Da Prato, Giuseppe and Debussche, Arnaud},
     title = {Differentiability of the transition semigroup of the stochastic {Burgers} equation, and application to the corresponding {Hamilton-Jacobi} equation},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {267--277},
     publisher = {mathdoc},
     volume = {Ser. 9, 9},
     number = {4},
     year = {1998},
     zbl = {0931.37036},
     mrnumber = {755001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_4_a3/}
}
TY  - JOUR
AU  - Da Prato, Giuseppe
AU  - Debussche, Arnaud
TI  - Differentiability of the transition semigroup of the stochastic Burgers equation, and application to the corresponding Hamilton-Jacobi equation
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1998
SP  - 267
EP  - 277
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_4_a3/
LA  - en
ID  - RLIN_1998_9_9_4_a3
ER  - 
%0 Journal Article
%A Da Prato, Giuseppe
%A Debussche, Arnaud
%T Differentiability of the transition semigroup of the stochastic Burgers equation, and application to the corresponding Hamilton-Jacobi equation
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1998
%P 267-277
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_4_a3/
%G en
%F RLIN_1998_9_9_4_a3
Da Prato, Giuseppe; Debussche, Arnaud. Differentiability of the transition semigroup of the stochastic Burgers equation, and application to the corresponding Hamilton-Jacobi equation. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 9 (1998) no. 4, pp. 267-277. http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_4_a3/

[1] J. M. Bismut, Large deviations and the Malliavin Calculus. Birkhäuser, 1984. | MR | Zbl

[2] P. Cannarsa - G. Da Prato, Some results on nonlinear optimal control problems and Hamilton-Jacobi equations in infinite dimensions. J. Funct. Anal., 90, 1990, 27-47. | DOI | MR | Zbl

[3] S. Cerrai, Optimal control problems for reaction-diffusion equations by a Dynamic Programming approach. Scuola Normale Superiore, Pisa 1998, preprint.

[4] G. Da Prato - A. Debussche, Control of the stochastic Burgers model of turbulence. Siam Journal on Control and Optimization, to appear. | DOI | MR | Zbl

[5] G. Da Prato - A. Debussche - R. Temam, Stochastic Burgers equation. NoDEA, 1994, 389-402. | DOI | MR | Zbl

[6] G. Da Prato - J. Zabczyk, Ergodicity for Infinite Dimensional Systems. London Mathematical Society Lecture Notes, 229, 1996. | DOI | MR | Zbl

[7] K. D. Elworthy, Stochastic flows on Riemannian manifolds. In: M. A. Pinsky - V. Vihstutz (eds.), Diffusion processes and related problems in analysis. Birkhäuser, 1992, vol. II, 33-72. | MR | Zbl

[8] W. H. Fleming - R. W. Rishel, Deterministic and Stochastic Optimal Control. Springer-Verlag, 1975. | MR | Zbl

[9] F. Gozzi, Regularity of solutions of a second order Hamilton-Jacobi equation and application to a control problem. Commun. in partial differential equations, 20, 1995, 775-826. | DOI | MR | Zbl