Unconditional nonlinear exponential stability in the Bénard problem for a mixture: necessary and sufficient conditions
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 9 (1998) no. 3, pp. 221-236.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The Lyapunov direct method is applied to study nonlinear exponential stability of a basic motionless state to imposed linear temperature and concentration fields of a binary fluid mixture heated and salted from below, in the Oberbeck-Boussinesq scheme. Stress-free and rigid surfaces are considered and absence of Hopf bifurcation is assumed. We prove the coincidence of the linear and (unconditional) nonlinear critical stability limits, when the ratio between the Schmidt and the Prandtl numbers is less or equal to 1. Precisely, we obtain necessary and sufficient conditions of unconditional nonlinear exponential stability of the basic motionless state.
Si applica il metodo diretto di Lyapunov allo studio della stabilità non lineare esponenziale della soluzione di conduzione-diffusione di una miscela fluida binaria riscaldata e salata da sotto, nello schema di Oberbeck-Boussinesq. Si considerano superfici rigide e stress-free ; si suppone che non ci sia biforcazione di Hopf. Supposto che il rapporto fra i numeri di Schmidt e di Prandtl è minore o uguale a 1, proviamo la coincidenza fra i parametri critici della stabilità lineare e non lineare. Si ottengono condizioni necessarie e sufficienti di stabilità non lineare esponenziale del moto base.
@article{RLIN_1998_9_9_3_a6,
     author = {Mulone, Giuseppe and Rionero, Salvatore},
     title = {Unconditional nonlinear exponential stability in the {B\'enard} problem for a mixture: necessary and sufficient conditions},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {221--236},
     publisher = {mathdoc},
     volume = {Ser. 9, 9},
     number = {3},
     year = {1998},
     zbl = {0922.76171},
     mrnumber = {250557},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_3_a6/}
}
TY  - JOUR
AU  - Mulone, Giuseppe
AU  - Rionero, Salvatore
TI  - Unconditional nonlinear exponential stability in the Bénard problem for a mixture: necessary and sufficient conditions
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1998
SP  - 221
EP  - 236
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_3_a6/
LA  - en
ID  - RLIN_1998_9_9_3_a6
ER  - 
%0 Journal Article
%A Mulone, Giuseppe
%A Rionero, Salvatore
%T Unconditional nonlinear exponential stability in the Bénard problem for a mixture: necessary and sufficient conditions
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1998
%P 221-236
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_3_a6/
%G en
%F RLIN_1998_9_9_3_a6
Mulone, Giuseppe; Rionero, Salvatore. Unconditional nonlinear exponential stability in the Bénard problem for a mixture: necessary and sufficient conditions. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 9 (1998) no. 3, pp. 221-236. http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_3_a6/

[1] H. Tabor, Large-area solar collections for power production. Solar Energy, 7, 1963, 189-196.

[2] H. Tabor - R. Maetz, Solar pond project. Solar Energy, 9, 1965, 177-182.

[3] H. Weinberger, The physics of the solar pond. Solar Energy, 8, 1964, n. 2, 45-56.

[4] D. D. Joseph, Stability of Fluid Motions. Springer Tracts in Natural Philosophy, 27-28, Springer-Verlag, New York 1976. | Zbl

[5] R. L. Sani, Ph. D. thesis. Univ. Minn., Minneapolis, 1963.

[6] G. Veronis, On finite amplitude instability in thermohaline convection. J. Marine Res., 23, 1965, 1-17.

[7] D. A. Nield, The thermohaline Rayleigh-Jeffreys problem. J. Fluid Mech., 29, 1967, 545-558.

[8] P. G. Baines - A. E. Gill, On thermohaline convection with linear gradients. J. Fluid Mech., 37, 1969, 289-306.

[9] C. C. Shir - D. D. Joseph, Convective instability in a temperature and concentration field. Arch. Rational Mech. Anal., 30, 1968, 38-80. | MR | Zbl

[10] G. P. Galdi - B. Straughan, A Nonlinear Analysis of the Stabilizing Effect of Rotation in the Bénard Problem. Proc. R. Soc. London, A, 402, 1985, 257-283. | MR | Zbl

[11] S. Rionero - G. Mulone, A Nonlinear Stability Analysis of the Magnetic Bénard Problem through the Lyapunov Direct Method. Arch. Rational Mech. Anal., 103, 1988, 347-368. | DOI | MR | Zbl

[12] S. Rionero, On the Choice of the Lyapunov Functional in the Stability of Fluid Motions. In: G. P. Galdi - B. Straughan (eds.), Energy Stability and Convection. Pitman Research Notes in Mathematics, 168, Wiley, New York 1988, 392-419. | MR | Zbl

[13] G. Mulone - S. Rionero, On the Non-linear Stability of the Rotating Bénard Problem via the Lyapunov Direct Method. J. Mat. Anal. App., 144, 1989, 109. | Zbl

[14] B. Straughan, The Energy Method, Stability, and Nonlinear Convection. Applied Mathematical Sciences, 91, Springer-Verlag, 1992, 242 pp. | MR | Zbl

[15] J. Flavin - S. Rionero, Qualitative estimates for partial differential equations. An introduction. CRC Press, Boca Raton, Florida, 1996. | MR | Zbl

[16] D. D. Joseph, Global stability of conduction diffusion solution. Arch. Rational Mech. Anal., 36, 1970, 285-292. | MR | Zbl

[17] R. L. Sani, On finite amplitude roll cell disturbances in a fluid layer subject to heat and mass transfer. A. I. Ch. E. Journal, 11, 1965, 971-980.

[18] G. Veronis, Effect of a stabilizing gradient of solute on thermal convection. J. Fluid Mech., 34, 1968, 315-336. | Zbl

[19] S. Rionero - G. Mulone, On the non-linear stability of parallel shear flows. Continuum Mech. Thermodyn., 3, 1991, 1-11. | DOI | MR | Zbl

[20] G. Mulone, On the stability of plane parallel convective flow. Acta Mechanica, 87, 1991, 153-162. | DOI | MR | Zbl

[21] G. Mulone, On the Lyapunov stability of a plane parallel convective flow of a binary mixture. Le Matematiche, 46, 1991, 283-294. | MR | Zbl

[22] G. Mulone, On the stability of plane parallel convective mixture through the Lyapunov second method. Atti Acc. Peloritana Pericolanti Cl. Sci Fis. Natur., 68, 1991, 491-516. | MR | Zbl

[23] G. Mulone, On the nonlinear stability of a fluid layer of a mixture heated and salted from below. Continuum Mech. Thermodyn., 6, 1994, 161-184. | DOI | MR | Zbl

[24] S. G. Mikhlin, The problem of the minimum of a quadratic functional. Holden-Day, San Francisco 1965. | MR | Zbl

[25] S. Chandrasekhar, Hydrodynamic and hydromagnetic stability. Clarendon Press, Oxford 1961. | MR | Zbl

[26] D. H. Sattinger, The mathematical problem of hydrodynamic stability. J. Math. Mech., 19, n. 9, 1970, 797-817. | MR | Zbl

[27] G. Mulone - S. Rionero, On the stability of the rotating Bénard problem. Bull. Tech. Univ. Istanbul, 47, 1994, 181-202. | MR | Zbl