Spectral properties of weakly almost periodic cosine functions
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 9 (1998) no. 3, pp. 177-211.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The spectral structure of the infinitesimal generator of a strongly continuous cosine function of linear bounded operators is investigated, under assumptions on the almost periodic behaviour of applications generated, in various ways, by C. Moreover, a first approach is presented to the analysis of connection between cosine functions and dynamical systems.
Si studia la struttura spettrale del generatore infinitesimale di una funzione coseno fortemente continua di operatori lineari limitati, sotto ipotesi sul comportamento quasi periodico di applicazioni generate, in diversi modi, da C. È, inoltre, presentato un primo approccio all’analisi del legame fra funzioni coseno e sistemi dinamici.
@article{RLIN_1998_9_9_3_a4,
     author = {Casarino, Valentina},
     title = {Spectral properties of weakly almost periodic cosine functions},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {177--211},
     publisher = {mathdoc},
     volume = {Ser. 9, 9},
     number = {3},
     year = {1998},
     zbl = {0944.47027},
     mrnumber = {275061},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_3_a4/}
}
TY  - JOUR
AU  - Casarino, Valentina
TI  - Spectral properties of weakly almost periodic cosine functions
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1998
SP  - 177
EP  - 211
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_3_a4/
LA  - en
ID  - RLIN_1998_9_9_3_a4
ER  - 
%0 Journal Article
%A Casarino, Valentina
%T Spectral properties of weakly almost periodic cosine functions
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1998
%P 177-211
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_3_a4/
%G en
%F RLIN_1998_9_9_3_a4
Casarino, Valentina. Spectral properties of weakly almost periodic cosine functions. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 9 (1998) no. 3, pp. 177-211. http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_3_a4/

[1] L. Amerio - G. Prouse, Almost periodic functions and functional equations. Van Nostrand, New York 1971. | MR | Zbl

[2] W. Arendt - C. J. K. Batty, Asymptotically almost periodic solutions of inhomogeneous Cauchy problems on the half-line. To appear. | DOI | MR | Zbl

[3] W. Arendt - C. J. K. Batty, Almost periodic solutions of first and second order Cauchy problem. To appear. | DOI | MR | Zbl

[4] W. Arendt - A. Grabosch - G. Greiner - U. Groh - H. P. Lotz - U. Moustakas - R. Nagel (Ed.) - F. Neubrander - U. Sclotterbeck, One-Parameter Semigroups of Positive Operators. Lecture Notes in Mathematics, n.1184, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo 1986. | MR

[5] J. Banks - J. Brooks - G. Cairns - G. Davis - P. Stacey, On Devaney’s definition of chaos. Amer. Math. Monthly, 99, 1992, 332-334. | DOI | MR | Zbl

[6] H. Bart - S. Goldberg, Characterization of almost periodic strongly continuous groups and semigroups. Math. Ann., 236, 1978, 105-116. | fulltext EuDML | MR | Zbl

[7] A. G. Baskakov, Harmonic analysis of cosine and exponential operator-valued functions. Math. USSR Sb., 52, 1985, 63-90. | Zbl

[8] H. Bohr, Almost periodic functions. Chelsea, New York 1947. | MR | Zbl

[9] V. Casarino, Spectral properties of weakly asymptotically almost periodic semigroups in the sense of Stepanov. Rend. Mat. Acc. Lincei, s. 9, vol. 8, 1997, 167-181. | fulltext bdim | fulltext EuDML | fulltext mini-dml | MR | Zbl

[10] I. Cioranescu, Characterization of almost periodic strongly continuous cosine operator functions. Journal of Math. Anal. and Appl., 116, 1986, 222-229. | DOI | MR | Zbl

[11] H. Fattorini, Uniformly bounded cosine functions in Hilbert space. Indiana. Univ. Math. J., 20, 1970, 411-425. | MR | Zbl

[12] H. Fattorini, Second order linear differential equations. North-Holland, Amsterdam 1985. | MR | Zbl

[13] M. Fréchet, Les fonctions asymptotiquement presque-périodiques continues. C. R. Acad. Sci. Paris, 213, 1941, 520-522. | Jbk 67.0231.01 | MR

[14] E. Giusti, Funzioni coseno periodiche. Boll. Unione Mat. Ital., 22, 1967, 478-485. | fulltext bdim | fulltext EuDML | fulltext mini-dml | MR | Zbl

[15] J. A. Goldstein, Semigroups of operators and applications. Oxford University Press, Oxford 1985. | MR | Zbl

[16] J. A. Goldstein - C. Radin - R. E. Showalter, Convergence rates of ergodic limits for semigroups and cosine functions. Semigroup Forum, 16, 1978, 89-95. | fulltext EuDML | MR | Zbl

[17] H. R. Henriquez, On Stepanov-almost periodic semigroups and cosine functions of operators. Journal of Math. Anal. and Appl., 146, 1990, 420-433. | DOI | MR | Zbl

[18] R. R. Kallman - G. Rota, On the inequality \( \| f^{\prime} \|^{2} \le 4 \| f^{\prime\prime} \| \cdot \| f \| \). In: O. Shisha (ed.), Inequalities II. Academic Press, New York 1970, 187-192. | MR | Zbl

[19] M. Lin, On the uniform ergodic theorem. Proc. of the Amer. Math. Soc., 43, 1974, 337-340. | MR | Zbl

[20] M. Lin, On the uniform ergodic theorem II. Proc. of the Amer. Math. Soc., 46, 1974, 217-225. | MR | Zbl

[21] Y. Meyer, Algebraic numbers and harmonic analysis. North-Holland, Amsterdam 1972. | MR | Zbl

[22] B. Nagy, On cosine operator functions in Banach spaces. Acta Sci. Math. (Szeged), 36, 1974, 281-290. | MR | Zbl

[23] J. M. A. M. Van Neerven, The Asymptotic Behaviour of Semigroups of Linear Operators. Birkhäuser Verlag, Basel 1996. | DOI | MR | Zbl

[24] S. I. Piskarev, Periodic and almost periodic cosine operator functions. Math. USSR Sb., 46, 1983, 391-402. | MR | Zbl

[25] W. M. Ruess - W. H. Summers, Compactness in spaces of vector-valued continuous functions and asymptotic almost periodicity. Math. Nachr., 135, 1988, 7-33. | DOI | MR | Zbl

[26] S. Y. Shaw, On \( W^{*} \)-continuous cosine operator functions. Journal of Funct. Anal., 66, 1986, 73-95. | DOI | MR | Zbl

[27] E. Vesentini, Introduction to continuous semigroups. Scuola Normale Superiore, Pisa 1996. | MR | Zbl

[28] E. Vesentini, Spectral properties of weakly asymptotically almost periodic semigroups. Advances in Math., 128, 1997, 217-241. | DOI | MR | Zbl

[29] E. Vesentini, Periodicity and almost periodicity in Markov lattice semigroups. Ann. Scuola Normale, 26, Pisa 1998, 829-839. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[30] P. Walters, An Introduction to Ergodic Theory. Springer-Verlag, New York 1982. | MR | Zbl