On the existence of infinitely many solutions for a class of semilinear elliptic equations in \( \mathbb{R}^{N} \)
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 9 (1998) no. 3, pp. 157-165.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We show, by variational methods, that there exists a set \( \mathcal{A} \) open and dense in \( {a \in L^{\infty} ( \mathbb{R}^{N}) : a \ge 0} \) such that if \( a \in \mathcal{A} \) then the problem \( - \triangle u + u = a(x) |u|^{p-1} u, u \in H^{1}(\mathcal{R}^{N}) \), with \( p \) subcritical (or more general nonlinearities), admits infinitely many solutions.
Usando metodi variazionali, si dimostra che esiste un insieme \( \mathcal{A} \) aperto e denso in \( {a \in L^{\infty} ( \mathbb{R}^{N}) : a \ge 0} \) tale che per ogni \( a \in \mathcal{A} \) il problema \( - \triangle u + u = a(x) |u|^{p-1} u, u \in H^{1}(\mathcal{R}^{N}) \), con \( p \) sottocritico (o con nonlinearità più generali), ammette infinite soluzioni.
@article{RLIN_1998_9_9_3_a2,
     author = {Alessio, Francesca and Caldiroli, Paolo and Montecchiari, Piero},
     title = {On the existence of infinitely many solutions for a class of semilinear elliptic equations in \( {\mathbb{R}^{N}} \)},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {157--165},
     publisher = {mathdoc},
     volume = {Ser. 9, 9},
     number = {3},
     year = {1998},
     zbl = {0923.35057},
     mrnumber = {1153310},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_3_a2/}
}
TY  - JOUR
AU  - Alessio, Francesca
AU  - Caldiroli, Paolo
AU  - Montecchiari, Piero
TI  - On the existence of infinitely many solutions for a class of semilinear elliptic equations in \( \mathbb{R}^{N} \)
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1998
SP  - 157
EP  - 165
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_3_a2/
LA  - en
ID  - RLIN_1998_9_9_3_a2
ER  - 
%0 Journal Article
%A Alessio, Francesca
%A Caldiroli, Paolo
%A Montecchiari, Piero
%T On the existence of infinitely many solutions for a class of semilinear elliptic equations in \( \mathbb{R}^{N} \)
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1998
%P 157-165
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_3_a2/
%G en
%F RLIN_1998_9_9_3_a2
Alessio, Francesca; Caldiroli, Paolo; Montecchiari, Piero. On the existence of infinitely many solutions for a class of semilinear elliptic equations in \( \mathbb{R}^{N} \). Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 9 (1998) no. 3, pp. 157-165. http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_3_a2/

[1] S. Alama - Y. Y. Li, Existence of solutions for semilinear elliptic equations with indefinite linear part. J. Diff. Eq., 96, 1992, 88-115. | DOI | MR | Zbl

[2] F. Alessio - P. Caldiroli - P. Montecchiari, Genericity of the existence of infinitely many solutions for a class of semilinear elliptic equations in \( \mathbb{R}^{n} \). Ann. Scuola Norm. Sup. Pisa, Cl. Sci., (4), to appear. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[3] A. Ambrosetti - M. Badiale, Homoclinics: Poincaré-Melnikov type results via a variational approach. C.R. Acad. Sci. Paris, 323, s. I, 1996, 753-758; Ann. Inst. H. Poincaré, Anal. non linéaire, to appear. | fulltext mini-dml | DOI | MR | Zbl

[4] A. Ambrosetti - M. Badiale - S. Cingolani, Semiclassical states of nonlinear Schrödinger equation. Arch. Rat. Mech. Anal., 140, 1997, 285-300. | DOI | MR | Zbl

[5] S. Angenent, The Shadowing Lemma for Elliptic PDE. In: S. N. Chow - J. K. Hale (eds.), Dynamics of Infinite Dimensional Systems. NATO ASI Series, F37, Springer-Verlag, 1987. | MR | Zbl

[6] A. Bahri - Y. Y. Li, On a Min-Max Procedure for the Existence of a Positive Solution for Certain Scalar Field Equation in \( \mathbb{R}^{n} \). Rev. Mat. Iberoamericana, 6, 1990, 1-15. | fulltext EuDML | DOI | MR | Zbl

[7] A. Bahri - P. L. Lions, On the existence of a positive solution of semilinear elliptic equations in unbounded domains. Ann. Inst. H. Poincaré, Anal. non linéaire, 14, 1997, 365-413. | fulltext EuDML | fulltext mini-dml | DOI | MR | Zbl

[8] H. Berestycki - P. L. Lions, Nonlinear scalar field equations. Arch. Rat. Mech. Anal., 82, 1983, 313-345. | DOI | MR | Zbl

[9] D. M. Cao, Positive solutions and bifurcation from the essential spectrum of a semilinear elliptic equation in \( \mathbb{R}^{n} \). Nonlinear Anal. T.M.A., 15, 1990, 1045-1052. | DOI | MR | Zbl

[10] D. M. Cao, Multiple solutions of a semilinear elliptic equation in \( \mathbb{R}^{n} \). Ann. Inst. H. Poincaré, Anal. non linéaire, 10, 1993, 593-604. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[11] D. M. Cao - E. S. Noussair, Multiplicity of positive and nodal solutions for nonlinear elliptic problems in \( \mathbb{R}^{n} \). Ann. Inst. H. Poincaré, Anal. non linéaire, 13, 1996, 567-588. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[12] S. Cingolani, On a perturbed semilinear elliptic equation in \( \mathbb{R}^{n} \). Comm. Appl. Anal., to appear. | MR | Zbl

[13] V. Coti Zelati - P. H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on \( \mathbb{R}^{n} \). Comm. Pure Appl. Math., 45, 1992, 1217-1269. | DOI | MR | Zbl

[14] M. Del Pino - P. L. Felmer, Multi-peak bound states for nonlinear Schrödinger equations. Ann. Inst. H. Poincaré, Anal. non linéaire, to appear. | fulltext EuDML | fulltext mini-dml | Zbl

[15] W. Y. Ding - W. M. Ni, On the existence of a positive entire solution of a semilinear elliptic equation. Arch. Rat. Mech. Anal., 91, 1986, 283-308. | DOI | MR | Zbl

[16] M. J. Esteban - P. L. Lions, Existence and nonexistence results for semilinear elliptic problems in unbounded domains. Proc. Roy. Soc. Edinburgh, 93, 1982, 1-14. | DOI | MR | Zbl

[17] C. Gui, Existence of multi-bump solutions for nonlinear Schrödinger equations via variational methods. Comm. in PDE, 21, 1996, 787-820. | DOI | MR | Zbl

[18] Y. Li, Remarks on a semilinear elliptic equations on \( \mathbb{R}^{n} \). J. Diff. Eq., 74, 1988, 34-39. | DOI | MR | Zbl

[19] Y. Y. Li, Prescribing scalar curvature on \( S^{3} \), \( S^{4} \) and related problems. J. Funct. Anal., 118, 1991, 43-118. | DOI | MR | Zbl

[20] Y. Y. Li, On a singularly perturbed elliptic equation. Adv. Diff. Eq., 2, 1997, 955-980. | MR | Zbl

[21] P. L. Lions, The concentration-compactness principle in the calculus of variations: the locally compact case. Part I, II. Ann. Inst. H. Poincaré, Anal. non linéaire, 1, 1984, 109-145; 223-283. | fulltext EuDML | fulltext mini-dml | fulltext mini-dml | Zbl

[22] P. Montecchiari, Multiplicity results for a class of Semilinear Elliptic Equations on \( \mathbb{R}^{m} \). Rend. Sem. Mat. Univ. Padova, 95, 1996, 217-252. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[23] R. Musina, Multiple positive solutions of the equation \( - \triangle u - \lambda u + k (x) u^{p-1} = 0 \) in \( \mathbb{R}^{n} \). Top. Meth. Nonlinear Anal., 7, 1996, 171-185. | MR | Zbl

[24] P. H. Rabinowitz, A note on a semilinear elliptic equation on \( \mathbb{R}^{n} \). In: A. Ambrosetti - A. Marino (eds.), Nonlinear Analysis, a tribute in honour of Giovanni Prodi. Quaderni della Scuola Normale Superiore, Pisa 1991. | MR | Zbl

[25] P. H. Rabinowitz, On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys., 43, 1992, 270-291. | DOI | MR | Zbl

[26] E. Séré, Looking for the Bernoulli shift. Ann. Inst. H. Poincaré, Anal. non linéaire, 10, 1993, 561-590. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[27] W. A. Strauss, Existence of solitary waves in higher dimensions. Comm. Math. Phys., 55, 1979, 149-162. | fulltext mini-dml | MR | Zbl

[28] C. A. Stuart, Bifurcation in \( L^{p} (\mathbb{R}^{n})\) for a semilinear elliptic equation. Proc. London Math. Soc., (3), 57, 1988, 511-541. | DOI | MR | Zbl