Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_1998_9_9_3_a2, author = {Alessio, Francesca and Caldiroli, Paolo and Montecchiari, Piero}, title = {On the existence of infinitely many solutions for a class of semilinear elliptic equations in \( {\mathbb{R}^{N}} \)}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {157--165}, publisher = {mathdoc}, volume = {Ser. 9, 9}, number = {3}, year = {1998}, zbl = {0923.35057}, mrnumber = {1153310}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_3_a2/} }
TY - JOUR AU - Alessio, Francesca AU - Caldiroli, Paolo AU - Montecchiari, Piero TI - On the existence of infinitely many solutions for a class of semilinear elliptic equations in \( \mathbb{R}^{N} \) JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 1998 SP - 157 EP - 165 VL - 9 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_3_a2/ LA - en ID - RLIN_1998_9_9_3_a2 ER -
%0 Journal Article %A Alessio, Francesca %A Caldiroli, Paolo %A Montecchiari, Piero %T On the existence of infinitely many solutions for a class of semilinear elliptic equations in \( \mathbb{R}^{N} \) %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 1998 %P 157-165 %V 9 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_3_a2/ %G en %F RLIN_1998_9_9_3_a2
Alessio, Francesca; Caldiroli, Paolo; Montecchiari, Piero. On the existence of infinitely many solutions for a class of semilinear elliptic equations in \( \mathbb{R}^{N} \). Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 9 (1998) no. 3, pp. 157-165. http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_3_a2/
[1] Existence of solutions for semilinear elliptic equations with indefinite linear part. J. Diff. Eq., 96, 1992, 88-115. | DOI | MR | Zbl
- ,[2] Genericity of the existence of infinitely many solutions for a class of semilinear elliptic equations in \( \mathbb{R}^{n} \). Ann. Scuola Norm. Sup. Pisa, Cl. Sci., (4), to appear. | fulltext EuDML | fulltext mini-dml | MR | Zbl
- - ,[3] Homoclinics: Poincaré-Melnikov type results via a variational approach. C.R. Acad. Sci. Paris, 323, s. I, 1996, 753-758; Ann. Inst. H. Poincaré, Anal. non linéaire, to appear. | fulltext mini-dml | DOI | MR | Zbl
- ,[4] Semiclassical states of nonlinear Schrödinger equation. Arch. Rat. Mech. Anal., 140, 1997, 285-300. | DOI | MR | Zbl
- - ,[5] The Shadowing Lemma for Elliptic PDE. In: S. N. Chow - J. K. Hale (eds.), Dynamics of Infinite Dimensional Systems. NATO ASI Series, F37, Springer-Verlag, 1987. | MR | Zbl
,[6] On a Min-Max Procedure for the Existence of a Positive Solution for Certain Scalar Field Equation in \( \mathbb{R}^{n} \). Rev. Mat. Iberoamericana, 6, 1990, 1-15. | fulltext EuDML | DOI | MR | Zbl
- ,[7] On the existence of a positive solution of semilinear elliptic equations in unbounded domains. Ann. Inst. H. Poincaré, Anal. non linéaire, 14, 1997, 365-413. | fulltext EuDML | fulltext mini-dml | DOI | MR | Zbl
- ,[8] Nonlinear scalar field equations. Arch. Rat. Mech. Anal., 82, 1983, 313-345. | DOI | MR | Zbl
- ,[9] Positive solutions and bifurcation from the essential spectrum of a semilinear elliptic equation in \( \mathbb{R}^{n} \). Nonlinear Anal. T.M.A., 15, 1990, 1045-1052. | DOI | MR | Zbl
,[10] Multiple solutions of a semilinear elliptic equation in \( \mathbb{R}^{n} \). Ann. Inst. H. Poincaré, Anal. non linéaire, 10, 1993, 593-604. | fulltext EuDML | fulltext mini-dml | MR | Zbl
,[11] Multiplicity of positive and nodal solutions for nonlinear elliptic problems in \( \mathbb{R}^{n} \). Ann. Inst. H. Poincaré, Anal. non linéaire, 13, 1996, 567-588. | fulltext EuDML | fulltext mini-dml | MR | Zbl
- ,[12] On a perturbed semilinear elliptic equation in \( \mathbb{R}^{n} \). Comm. Appl. Anal., to appear. | MR | Zbl
,[13] Homoclinic type solutions for a semilinear elliptic PDE on \( \mathbb{R}^{n} \). Comm. Pure Appl. Math., 45, 1992, 1217-1269. | DOI | MR | Zbl
- ,[14] Multi-peak bound states for nonlinear Schrödinger equations. Ann. Inst. H. Poincaré, Anal. non linéaire, to appear. | fulltext EuDML | fulltext mini-dml | Zbl
- ,[15] On the existence of a positive entire solution of a semilinear elliptic equation. Arch. Rat. Mech. Anal., 91, 1986, 283-308. | DOI | MR | Zbl
- ,[16] Existence and nonexistence results for semilinear elliptic problems in unbounded domains. Proc. Roy. Soc. Edinburgh, 93, 1982, 1-14. | DOI | MR | Zbl
- ,[17] Existence of multi-bump solutions for nonlinear Schrödinger equations via variational methods. Comm. in PDE, 21, 1996, 787-820. | DOI | MR | Zbl
,[18] Remarks on a semilinear elliptic equations on \( \mathbb{R}^{n} \). J. Diff. Eq., 74, 1988, 34-39. | DOI | MR | Zbl
,[19] Prescribing scalar curvature on \( S^{3} \), \( S^{4} \) and related problems. J. Funct. Anal., 118, 1991, 43-118. | DOI | MR | Zbl
,[20] On a singularly perturbed elliptic equation. Adv. Diff. Eq., 2, 1997, 955-980. | MR | Zbl
,[21] The concentration-compactness principle in the calculus of variations: the locally compact case. Part I, II. Ann. Inst. H. Poincaré, Anal. non linéaire, 1, 1984, 109-145; 223-283. | fulltext EuDML | fulltext mini-dml | fulltext mini-dml | Zbl
,[22] Multiplicity results for a class of Semilinear Elliptic Equations on \( \mathbb{R}^{m} \). Rend. Sem. Mat. Univ. Padova, 95, 1996, 217-252. | fulltext EuDML | fulltext mini-dml | MR | Zbl
,[23] Multiple positive solutions of the equation \( - \triangle u - \lambda u + k (x) u^{p-1} = 0 \) in \( \mathbb{R}^{n} \). Top. Meth. Nonlinear Anal., 7, 1996, 171-185. | MR | Zbl
,[24] A note on a semilinear elliptic equation on \( \mathbb{R}^{n} \). In: A. Ambrosetti - A. Marino (eds.), Nonlinear Analysis, a tribute in honour of Giovanni Prodi. Quaderni della Scuola Normale Superiore, Pisa 1991. | MR | Zbl
,[25] On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys., 43, 1992, 270-291. | DOI | MR | Zbl
,[26] Looking for the Bernoulli shift. Ann. Inst. H. Poincaré, Anal. non linéaire, 10, 1993, 561-590. | fulltext EuDML | fulltext mini-dml | MR | Zbl
,[27] Existence of solitary waves in higher dimensions. Comm. Math. Phys., 55, 1979, 149-162. | fulltext mini-dml | MR | Zbl
,[28] Bifurcation in \( L^{p} (\mathbb{R}^{n})\) for a semilinear elliptic equation. Proc. London Math. Soc., (3), 57, 1988, 511-541. | DOI | MR | Zbl
,