Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_1998_9_9_2_a7, author = {Caputo, Michele}, title = {3-dimensional physically consistent diffusion in anisotropic media with memory}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {131--143}, publisher = {mathdoc}, volume = {Ser. 9, 9}, number = {2}, year = {1998}, zbl = {0948.76075}, mrnumber = {75784}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_2_a7/} }
TY - JOUR AU - Caputo, Michele TI - 3-dimensional physically consistent diffusion in anisotropic media with memory JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 1998 SP - 131 EP - 143 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_2_a7/ LA - en ID - RLIN_1998_9_9_2_a7 ER -
%0 Journal Article %A Caputo, Michele %T 3-dimensional physically consistent diffusion in anisotropic media with memory %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 1998 %P 131-143 %V 9 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_2_a7/ %G en %F RLIN_1998_9_9_2_a7
Caputo, Michele. 3-dimensional physically consistent diffusion in anisotropic media with memory. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 9 (1998) no. 2, pp. 131-143. http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_2_a7/
[1] Analytical solution of a convection dispersion model with time dependent transport coefficient. J. Geophys. Res., 25,12, 1989, 2407-2416.
- ,[2] Strength Changes Due to Reservoir-Induced Pore Pressure and Stresses and Application to Lake Oroville. J. Geophys. Res., 83, 89, 1978, 4469-4483.
- ,[3] Aquifer-induced seismicity in the central Apennines (Italy ). Pure and Applied Geophysics, 1998, in press.
- - - - - - - ,[4] General theory of three dimensional consolidation. J. Appl. Phys., 12, 1941, 155-164. | Jbk 67.0837.01
,[5] General solutions of the equations of elasticity and consolidation for a porous material. J. Appl. Mech., 78, 1956, 91-96. | MR | Zbl
,[6] Thermoelasticity and irreversible thermodynamics. J. Appl. Phys., 27, 1956, 240-253. | MR | Zbl
,[7] Non linear and semilinear rheology of porous solids. J. Geophys. Res., 78, 1973, 4924-4937.
,[8] The elastic coefficients of the theory of consolidation. J. Appl. Mech., 24, 1957, 594-601. | MR
- ,[9] Transient coupled thermoelastic boundary value problem in the half space. J. Appl. Mech., 29(4), 1962, 637-646. | MR | Zbl
- ,[10] Time dependent strain following faulting of a porous medium. J. Geophys. Res., 79, 1974, 2037-2044.
,[11] Elasticità e dissipazione. Zanichelli, Bologna 1969.
,[12] Vibrations of an infinite plate with frequency independent Q. J. Acoust. Soc. Am., 60, 3, 1976, 634-639.
,[13] Relaxation and free modes of a selfgravitating planet. Geophys J. R. Astr. Soc., 77, 1984, 789-808.
,[14] Velocity of propagation of precursors of strong earthquakes and reduction of the alarm area. Rend. Fis. Acc. Lincei, s. 9, v. 3, 1992, 5-10.
,[15] The Green function of diffusion of fluids in porous media with memory. Rend. Fis. Acc. Lincei, s. 9, v. 7, 1996, 243-250. | Zbl
,[16] Mean fractional-order-derivatives differential equations and filters. Annali Univ. Ferrara, sez. VII, Scienze Matematiche, 41, 1995, 73-83. | MR | Zbl
,[17] Modern rheology and electric induction: multivalued index of refraction, splitting of eigenvalues and fatigue. Annali di Geofisica, 39, 5, 1996, 941-966.
,[18] Diffusion of fluids in porous media with memory. Geothermics, in press.
,[19] Non equilibrium statistical mechanical derivation of a nonlocal Darcy’s law for insaturated/saturated flow. Stochastic Hydrology and Hydraulics, 8, 1994, 109-116. | Zbl
- ,[20] Rheological models and interpretation of postglacial uplift. Geophys. J. R., Astr. Soc., 98, 1989, 243-253.
- ,[21] Fractional diffusive waves in viscoelastic solids. Appl. Mech. Rev., 46, 549, 1993, 93-97.
,[22] Displacement functions and linear transforms applied to diffusion through porous elastic media. Quart. J. Mech. Appl. Math., 13, 1960, 99-111. | MR | Zbl
- ,[23] Green function for thermoelastic medium, 2. Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys., 12, 1964, 465-472. | Zbl
,[24] Some basic stress-diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Rev. Geophys. Space Phys., 14, 1976, 227-241.
- ,[25] Fault Stability Changes Induced Beneath a Reservoir with Cyclic Variations in Water Level. J. Geophys. Res., 93, B3, 1988, 2107-2124.
,[26] Fractional diffusion and wave equations. J. Math. Phys., 30, 1989, 134-144. | DOI | MR | Zbl
- ,[27] Die Berechnung der Durchassigkeitsziffer des Tones aus dem Verlauf der Hydrodynamischen Spannungsercheinungen. Sitzungsber. Akad. Wiss. Wien Math.-Naturwiss. Kl., Abt. 2A, 132, 1923, 105.
,[28] The shearing resistance of saturated soils. Proc. Int. Conf. Soil Mech. Found. Engin. Ist., 1, 1936, 54-55.
,[29] Fractional diffusion equation. J. Math. Phys., 27, 1986, 2782-2785. | DOI | MR | Zbl
,