Monotonicity and symmetry of solutions of \( p \)-Laplace equations, \( 1 p 2 \), via the moving plane method
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 9 (1998) no. 2, pp. 95-100.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We present some monotonicity and symmetry results for positive solutions of the equation \( - \text{div} ( |Du| ^{p-2} Du ) = f (u) \) satisfying an homogeneous Dirichlet boundary condition in a bounded domain \( \Omega \). We assume 1 p 2 and \( f \) locally Lipschitz continuous and we do not require any hypothesis on the critical set of the solution. In particular we get that if \( \Omega \) is a ball then the solutions are radially symmetric and strictly radially decreasing.
Dimostriamo alcuni risultati di monotonia e simmetria per soluzioni positive dell’equazione \( - \text{div} ( |Du| ^{p-2} Du ) = f (u) \) con condizioni di Dirichlet omogenee sul bordo in un dominio limitato \( \Omega \). Supponiamo che 1 p 2 e che \( f \) sia localmente Lipschitziana e non facciamo alcuna ipotesi sui punti critici della soluzione. In particolare otteniamo che se \( \Omega \) e` una palla le soluzioni sono radiali e radialmente strettamente decrescenti.
@article{RLIN_1998_9_9_2_a3,
     author = {Damascelli, Lucio and Pacella, Filomena},
     title = {Monotonicity and symmetry of solutions of \( p {\)-Laplace} equations, \( 1 < p < 2 \), via the moving plane method},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {95--100},
     publisher = {mathdoc},
     volume = {Ser. 9, 9},
     number = {2},
     year = {1998},
     zbl = {0923.35013},
     mrnumber = {1380325},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_2_a3/}
}
TY  - JOUR
AU  - Damascelli, Lucio
AU  - Pacella, Filomena
TI  - Monotonicity and symmetry of solutions of \( p \)-Laplace equations, \( 1 < p < 2 \), via the moving plane method
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1998
SP  - 95
EP  - 100
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_2_a3/
LA  - en
ID  - RLIN_1998_9_9_2_a3
ER  - 
%0 Journal Article
%A Damascelli, Lucio
%A Pacella, Filomena
%T Monotonicity and symmetry of solutions of \( p \)-Laplace equations, \( 1 < p < 2 \), via the moving plane method
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1998
%P 95-100
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_2_a3/
%G en
%F RLIN_1998_9_9_2_a3
Damascelli, Lucio; Pacella, Filomena. Monotonicity and symmetry of solutions of \( p \)-Laplace equations, \( 1 < p < 2 \), via the moving plane method. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 9 (1998) no. 2, pp. 95-100. http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_2_a3/

[1] M. Badiale - E. Nabana, A note on radiality of solutions of \( p \)-laplacian equations. Appl. Anal., 52, 1994, 35-43. | DOI | MR | Zbl

[2] F. Brock, Continuous Rearrangement and symmetry of solutions of elliptic problems. Habilitation thesis, Cologne 1997. | Zbl

[3] L. Damascelli, Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results. Ann. Inst. H. Poincaré, in press. | fulltext EuDML | fulltext mini-dml | Zbl

[4] L. Damascelli - F. Pacella, Monotonicity and symmetry of solutions of \( p \)-Laplace equations, 1 &lt; p &lt; 2, via the moving plane method. Ann. Scuola Norm. Sup. Pisa, in press. | fulltext mini-dml | Zbl

[5] E. Dibenedetto, \( C^{1 + \alpha} \) local regularity of weak solutions of degenerate elliptic equations. Nonlinear An. T.M.A., 7 (8), 1983, 827-850. | DOI | MR | Zbl

[6] B. Gidas - W. M. Ni - L. Nirenberg, Symmetry and related properties via the maximum principle. Comm. Math. Phys., 68, 1979, 209-243. | fulltext mini-dml | MR | Zbl

[7] M. Grossi - S. Kesavan - F. Pacella - M. Ramaswami, Symmetry of positive solutions of some nonlinear equations. Topological Methods in Nonlinear Analysis, to appear. | Zbl

[8] S. Kesavan - F. Pacella, Symmetry of positive solutions of a quasilinear elliptic equation via isoperimetric inequality. Appl. Anal., 54, 1994, 27-37. | DOI | MR | Zbl

[9] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations. J. Diff. Eq., 51, 1984, 126-150. | DOI | MR | Zbl