Sur les rétractes holomorphes de dimension 1
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 9 (1998) no. 1, pp. 31-41.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this Note, I study existence and unicity of holomorphic retractions on complex submanifolds of dimension 1.
In questa Nota, vengono studiate l’esistenza e l’unicità di retratti olomorfi su sottovarietà complesse di dimensione 1.
@article{RLIN_1998_9_9_1_a3,
     author = {Vigu\'e, Jean-Pierre},
     title = {Sur les r\'etractes holomorphes de dimension 1},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {31--41},
     publisher = {mathdoc},
     volume = {Ser. 9, 9},
     number = {1},
     year = {1998},
     zbl = {0932.32025},
     mrnumber = {1126396},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_1_a3/}
}
TY  - JOUR
AU  - Vigué, Jean-Pierre
TI  - Sur les rétractes holomorphes de dimension 1
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1998
SP  - 31
EP  - 41
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_1_a3/
ID  - RLIN_1998_9_9_1_a3
ER  - 
%0 Journal Article
%A Vigué, Jean-Pierre
%T Sur les rétractes holomorphes de dimension 1
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1998
%P 31-41
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_1_a3/
%F RLIN_1998_9_9_1_a3
Vigué, Jean-Pierre. Sur les rétractes holomorphes de dimension 1. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 9 (1998) no. 1, pp. 31-41. http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_1_a3/

[1] L. Belkhchicha, Caractérisation des isomorphismes analytiques de certains domaines bornés. C. R. Acad. Sc. Paris, s. I, Math., 313, 1991, 281-284. | MR | Zbl

[2] L. Belkhchicha, Caractérisation des isomorphismes analytiques sur la boule-unité de \( \mathbb{C^{n}} \) pour une norme. Math. Z., 215, 1994, 129-141. | fulltext EuDML | DOI | MR | Zbl

[3] H. Cartan, Sur les fonctions de plusieurs variables complexes: l’itérations des transformations intérieures d’un domaine borné. Math. Z., 35, 1932, 760-773. | fulltext EuDML | DOI | MR | Zbl

[4] H. Cartan, Sur les rétractions d’une variété. C.R. Acad. Sc. Paris, s. I, Math., 303, 1986, 715-716. | MR | Zbl

[5] S. Dineen, The Schwarz Lemma. Oxford Math. Monographs, Clarendon Press, Oxford 1989. | MR | Zbl

[6] S. Dineen, Convexity in complex analysis. In: P. Jakobczak - W. Pleasniak (eds.), Topics in complex analysis. Banach Center Publications, 31, Warszawa 1995, 151-162. | MR | Zbl

[7] D. Eisenman, Intrinsic measures on complex manifolds. Memoirs Amer. Math. Soc., 96, 1970. | Zbl

[8] T. Franzoni - E. Vesentini, Holomorphic maps and invariant distances. Math. Studies, 40, North-Holland, Amsterdam-New York 1980. | MR | Zbl

[9] G. Gentili, On non-uniqueness of complex geodesics in convex bounded domains. Atti Acc. Lincei Rend. fis., s. 8, v. 79, 1985, 90-97. | MR | Zbl

[10] G. Gentili, On complex geodesics of balanced convex domains. Ann. Mat. Pura et Appl., 144, 1986, 113-130. | DOI | MR | Zbl

[11] L. Harris, Schwarz-Pick systems of pseudometrics for domains in normed linear spaces. In: J. A. Barroso (ed.), Advances in Holomorphy. Proceedings of the Seminario de Holomorfia (Rio de Janeiro, 26-28 September 1977). Math. Studies, 34, North-Holland, Amsterdam-New York 1979, 345-406. | MR | Zbl

[12] L. Heath - T. Suffridge, Holomorphic retracts in complex \( n \)-space. Illinois J. Math., 25, 1981, 125-135. | fulltext mini-dml | MR | Zbl

[13] M. Jarnicki - P. Pflug, Invariant distances and metrics in complex analysis. De Gruyter Expositions in Mathematics, 9, Walter de Gruyter, Berlin-New York 1993. | DOI | MR | Zbl

[14] P. Kiernan, On the relations between taut, tight and hyperbolic manifolds. Bull. Amer. Math. Soc., 76, 1970, 49-51. | fulltext mini-dml | MR | Zbl

[15] S. Kobayashi, Intrinsic distances, measures and geometric function theory. Bull. Amer. Math. Soc., 82, 1976, 357-416. | fulltext mini-dml | MR | Zbl

[16] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule. Bull. Soc. Math. Fr., 109, 1981, 427-474. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[17] L. Lempert, Holomorphic retracts and intrinsic metrics in convex domains. Anal. Math., 8, 1982, 257-261. | DOI | MR | Zbl

[18] H. Royden - P. Wong, Carathéodory and Kobayashi metrics on convex domains. Preprint 1983.

[19] E. Thorp - R. Whitley, The strong maximum modulus theorem for analytic functions into a Banach space. Proc. Amer. Math. Soc., 18, 1967, 640-646. | MR | Zbl

[20] E. Vesentini, Complex geodesics. Compositio Math., 44, 1981, 375-394. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[21] E. Vesentini, Complex geodesics and holomorphic mappings. Symposia Math., 26, 1982, 211-230. | MR | Zbl

[22] E. Vesentini, Invariant distances and invariant differential metrics in locally convex spaces. In: W. Zelazko (ed.), Spectral Theory. Banach Center Publications, 8, Warszawa 1982, 493-512. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[23] J.-P. Vigué, Sur les points fixes d’applications holomorphes. C. R. Acad. Sc. Paris, I, Math., 303, 1986, 927-930. | MR | Zbl

[24] H. Wu, Normal families of holomorphic mappings. Acta Math., 119, 1967, 194-233. | MR | Zbl