Maximal regularity for stochastic convolutions in \( L^p \) spaces
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 9 (1998) no. 1, pp. 25-29.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We prove an optimal \( L^p \) regularity result for stochastic convolutions in certain Banach spaces. It is stated in terms of real interpolation spaces.
Si dimostra un risultato di regolarità ottimale \( L^p \) per convoluzioni stocastiche in spazi di interpolazione fra opportuni spazi di Banach.
@article{RLIN_1998_9_9_1_a2,
     author = {Da Prato, Giuseppe and Lunardi, Alessandra},
     title = {Maximal regularity for stochastic convolutions in \( {L^p} \) spaces},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {25--29},
     publisher = {mathdoc},
     volume = {Ser. 9, 9},
     number = {1},
     year = {1998},
     zbl = {0924.60029},
     mrnumber = {700357},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_1_a2/}
}
TY  - JOUR
AU  - Da Prato, Giuseppe
AU  - Lunardi, Alessandra
TI  - Maximal regularity for stochastic convolutions in \( L^p \) spaces
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1998
SP  - 25
EP  - 29
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_1_a2/
LA  - en
ID  - RLIN_1998_9_9_1_a2
ER  - 
%0 Journal Article
%A Da Prato, Giuseppe
%A Lunardi, Alessandra
%T Maximal regularity for stochastic convolutions in \( L^p \) spaces
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1998
%P 25-29
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_1_a2/
%G en
%F RLIN_1998_9_9_1_a2
Da Prato, Giuseppe; Lunardi, Alessandra. Maximal regularity for stochastic convolutions in \( L^p \) spaces. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 9 (1998) no. 1, pp. 25-29. http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_1_a2/

[1] G. Da Prato, Some results on linear stochastic differential equations in Hilbert spaces by semi-groups methods. Stoch. Anal. Appl., 1, 1983, 57-88. | DOI | MR | Zbl

[2] G. Da Prato - J. Zabczyk, Differential Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge 1992. | DOI | MR | Zbl

[3] G. Di Blasio, Holomorphic semigroups in interpolation and extrapolation spaces. Semigroup Forum, 47, 1993, 105-114. | fulltext EuDML | DOI | MR | Zbl

[4] N. V. Krylov, On \( L_p \) theory of stochastic partial differential equations in the whole space. SIAM J. Math. Anal., 27, 1996, 313-340. | DOI | MR | Zbl

[5] E. Lenglart - D. Lepingle - M. Pratelli, Presentation unifiée de certaines inegalités de la théorie des martingles. In: J. Azema - M. Yor (eds.), Séminaire de Probabilités XIV. Lecture Notes in Mathematics, 784, Springer-Verlag, Berlin-New York 1978-79, 26-48. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[6] E. Pardoux, Stochastic partial differential equations and filtering of diffusion processes. Stochastics, 3, 1979, 127-167. | DOI | MR | Zbl

[7] M. Pratelli, Intégration stochastique et géométrie des espaces de Banach. In: J. Azema - P. A. Meyer - M. Yor (eds.), Séminaire de Probabilités XXII. Lecture Notes in Mathematics, 1321, Springer-Verlag, Berlin-New York 1988, 129-137. | fulltext EuDML | fulltext mini-dml | DOI | MR | Zbl

[8] H. Triebel, Interpolation theory, function spaces, differential operators. North-Holland, Amsterdam-New York 1978. | MR | Zbl