On groups with many nearly maximal subgroups
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 9 (1998) no. 1, pp. 19-23

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

A subgroup \( M \) of a group \( G \) is nearly maximal if the index \( |G : M | \) is infinite but every subgroup of \( G \) properly containing \( M \) has finite index, and the group \( G \) is called nearly \( IM \) if all its subgroups of infinite index are intersections of nearly maximal subgroups. It is proved that an infinite (generalized) soluble group is nearly \( IM \) if and only if it is either cyclic or dihedral.
@article{RLIN_1998_9_9_1_a1,
     author = {Franciosi, Silvana and de Giovanni, Francesco},
     title = {On groups with many nearly maximal subgroups},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {19--23},
     publisher = {mathdoc},
     volume = {Ser. 9, 9},
     number = {1},
     year = {1998},
     zbl = {0924.20021},
     mrnumber = {MR1669256},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_1_a1/}
}
TY  - JOUR
AU  - Franciosi, Silvana
AU  - de Giovanni, Francesco
TI  - On groups with many nearly maximal subgroups
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1998
SP  - 19
EP  - 23
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_1_a1/
LA  - en
ID  - RLIN_1998_9_9_1_a1
ER  - 
%0 Journal Article
%A Franciosi, Silvana
%A de Giovanni, Francesco
%T On groups with many nearly maximal subgroups
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1998
%P 19-23
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_1_a1/
%G en
%F RLIN_1998_9_9_1_a1
Franciosi, Silvana; de Giovanni, Francesco. On groups with many nearly maximal subgroups. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 9 (1998) no. 1, pp. 19-23. http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_1_a1/