Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_1997_9_8_4_a3, author = {Nochetto, Ricardo H. and Schmidt, Alfred and Verdi, Claudio}, title = {Adapting meshes and time-steps for phase change problems}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {273--292}, publisher = {mathdoc}, volume = {Ser. 9, 8}, number = {4}, year = {1997}, zbl = {0910.65106}, mrnumber = {1831629}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_1997_9_8_4_a3/} }
TY - JOUR AU - Nochetto, Ricardo H. AU - Schmidt, Alfred AU - Verdi, Claudio TI - Adapting meshes and time-steps for phase change problems JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 1997 SP - 273 EP - 292 VL - 8 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_1997_9_8_4_a3/ LA - en ID - RLIN_1997_9_8_4_a3 ER -
%0 Journal Article %A Nochetto, Ricardo H. %A Schmidt, Alfred %A Verdi, Claudio %T Adapting meshes and time-steps for phase change problems %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 1997 %P 273-292 %V 8 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_1997_9_8_4_a3/ %G en %F RLIN_1997_9_8_4_a3
Nochetto, Ricardo H.; Schmidt, Alfred; Verdi, Claudio. Adapting meshes and time-steps for phase change problems. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 8 (1997) no. 4, pp. 273-292. http://geodesic.mathdoc.fr/item/RLIN_1997_9_8_4_a3/
[1] Degenerate phase transition problems of parabolic type. Smoothness of the front. To appear. | DOI | MR
- - ,[2] Local mesh refinement in 2 and 3 dimensions. IMPACT Comput. Sci. Engrg., 3, 1991, 181-191. | DOI | MR | Zbl
,[3] The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam 1978. | MR | Zbl
,[4] Approximation by finite element functions using local regularization. RAIRO Modél. Math. Anal. Numér., 9, 1975, 77-84. | fulltext EuDML | fulltext mini-dml | MR | Zbl
,[5] Mesh modification for evolution equations. Math. Comp., 29, 1982, 85-107. | DOI | MR | Zbl
,[6] Error analysis of the enthalpy method for the Stefan problem. IMA J. Numer. Anal, 7, 1987, 61-71. | DOI | MR | Zbl
,[7] Adaptive finite element methods for parabolic problems. I: A linear model problem. SIAM J. Numer. Anal., 28, 1991, 43-77. | DOI | MR | Zbl
- ,[8] Error estimates for the multidimensional two-phase Stefan problem. Math. Comp., 39, 1982, 377-414. | DOI | MR | Zbl
- ,[9] Optimal error estimates for semidiscrete phase relaxation models. RAIRO Modél. Math. Anal. Numér., 31, 1997, 91-120. | fulltext EuDML | fulltext mini-dml | MR | Zbl
- ,[10] A finite element method for a phase relaxation model. Part I: Quasi-uniform mesh. SIAM J. Numer. Anal., to appear. | DOI | MR | Zbl
- ,[11] A \( P^{1}-P^{1} \) finite element method for a phase relaxation model. Part II: Adaptively refined meshes. SIAM J. Numer. Anal., to appear. | DOI | MR | Zbl
- - ,[12] Adaptive Monotone Multigrid Methods for Nonlinear Variational Problems. Teubner, Stuttgart 1997. | MR | Zbl
,[13] A recursive approach to local mesh refinement in two and three dimensions. J. Comput. Appl. Math., 55, 1994, 275-288. | DOI | MR | Zbl
,[14] Linear and Quasilinear Equations of Parabolic Type. TMM 23, AMS, Providence 1968. | MR | Zbl
- - ,[15] Energy error estimates for a linear scheme to approximate nonlinear parabolic problems. RAIRO Modél. Math. Anal. Numér., 21, 1987, 655-678. | fulltext EuDML | fulltext mini-dml | MR | Zbl
- - ,[16] Local bisection refinement for n-simplicial grids generated by reflection. SIAM J. Sci. Statist. Comput., 16, 1995, 210-227. | DOI | MR | Zbl
,[17] A comparison of adaptive refinement techniques for elliptic problems. ACM Trans. Math. Softw., 15, 1989, 326-347. | DOI | MR | Zbl
,[18] Error estimates for multidimensional singular parabolic problems. Japan J. Indust. Appl. Math., 4, 1987, 111-138. | DOI | MR | Zbl
,[19] Finite element methods for parabolic free boundary problems. In: W. LIGHT (ed.), Advances in Numerical Analysis, Nonlinear Partial Differential Equations and Dynamical Systems. Oxford University Press, vol. I, Oxford 1991, 34-88. | MR | Zbl
,[20] An adaptive finite elements method for two-phase Stefan problems in two space dimensions. Part I: Stability and error estimates. Supplement. Math. Comp., 57, 1991, 73-108, S1-S11. | DOI | MR | Zbl
- - ,[21] An adaptive finite elements method for two-phase Stefan problems in two space dimensions. Part II: Implementation and numerical experiments. SIAM J. Sci. Statist. Comput., 12, 1991, 1207-1244. | DOI | MR | Zbl
- - ,[22] A fully discrete adaptive nonlinear Chernoff formula. SIAM J. Numer. Anal., 30, 1993, 991-1014. | DOI | MR | Zbl
- - ,[23] A posteriori error estimation and adaptivity for degenerate parabolic problems. Math. Comp., to appear. | DOI | MR | Zbl
- - ,[24] Mesh and time step modification for degenerate parabolic problems. In preparation.
- - ,[25] Adaptive algorithm and simulations for Stefan problems in two and three dimensions. In preparation.
- - ,[26] Approximation of degenerate parabolic problems using numerical integration. SIAM J. Numer. Anal., 25, 1988, 784-814. | DOI | MR | Zbl
- ,[27] An efficient linear scheme to approximate parabolic free boundary problems: error estimates and implementation. Math. Comp., 51, 1988, 27-53. | DOI | MR | Zbl
- ,[28] Error analysis for implicit approximations to solutions to Chauchy problems. SIAM J. Numer. Anal., 33, 1996, 68-87. | DOI | MR | Zbl
,[29] Optimat rates of convergence for degenerate parabolic problems in two dimensions. SIAM J. Numer. Anal., 33, 1996, 56-57. | DOI | MR | Zbl
- ,[30] Numerical aspects of parabolic free boundary and hysteresis problems. in: A. VISINTIN (ed.), Phase Transition and Hysteresis. Lectures Notes in Mathematics, 1584, Springer-Verlag, Berlin 1994, 213-284. | DOI | MR | Zbl
,[31] Error estimates for a semiexplicit numerical scheme for Stefan-type problems. Numer. Math., 52, 1988, 165-185. | fulltext EuDML | DOI | MR | Zbl
- ,[32] Models of Phase Transitions. Birkhäuser, Boston 1996. | DOI | MR | Zbl
,