Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_1997_9_8_3_a2, author = {Johnson, Russell and Kamenskii, Mikhail and Nistri, Paolo}, title = {On the existence of periodic solutions of an hyperbolic equation in a thin domain}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {189--195}, publisher = {mathdoc}, volume = {Ser. 9, 8}, number = {3}, year = {1997}, zbl = {0910.35008}, mrnumber = {1383978}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_1997_9_8_3_a2/} }
TY - JOUR AU - Johnson, Russell AU - Kamenskii, Mikhail AU - Nistri, Paolo TI - On the existence of periodic solutions of an hyperbolic equation in a thin domain JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 1997 SP - 189 EP - 195 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_1997_9_8_3_a2/ LA - en ID - RLIN_1997_9_8_3_a2 ER -
%0 Journal Article %A Johnson, Russell %A Kamenskii, Mikhail %A Nistri, Paolo %T On the existence of periodic solutions of an hyperbolic equation in a thin domain %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 1997 %P 189-195 %V 8 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_1997_9_8_3_a2/ %G en %F RLIN_1997_9_8_3_a2
Johnson, Russell; Kamenskii, Mikhail; Nistri, Paolo. On the existence of periodic solutions of an hyperbolic equation in a thin domain. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 8 (1997) no. 3, pp. 189-195. http://geodesic.mathdoc.fr/item/RLIN_1997_9_8_3_a2/
[1] Lower semicontinuity of attractors for a reaction-diffusion equation on thin domains with varying order of thinness. Preprint, Université de Paris-Sud, 1996. | DOI | MR
,[2] Reaction-diffusion equations on thin domains with varying order of thinness. Jour. Diff. Eqns., 126, 1996, 244-291. | DOI | MR | Zbl
,[3] On the method of semidiscretization in periodic solutions problems for quasilinear autonomous parabolic equations. Differential Equations, 32, 1996, 101-106 (in Russian). | MR | Zbl
- ,[4] A damped hyperbolic equation on thin domains. Trans. Am. Math. Soc., 329, 1992, 185-219. | DOI | MR | Zbl
- ,[5] Reaction-diffusion equations in thin domains. Jour. Math. Pures et Appl., 71, 1992, 33-95. | MR | Zbl
- ,[6] Limits of semigroups depending on parameters. Resenhas IME-USP, 1, 1993, 1-45. | MR | Zbl
- ,[7] Existence of periodic solutions for an autonomous damped wave equation in a thin domain. Submitted. | Zbl
- - ,[8] On periodic solutions of a damped wave equation in a thin domain using degree theoretic methods. Jour. Diff. Eqns., to appear. | DOI | MR | Zbl
- - ,[9] Integral Operators in Spaces of Summable Functions. Noordhooff International Publishing, Leyden 1976. | MR | Zbl
- - - ,[10] Linear Differential Equations in Banach Spaces. Nauka, Moscow 1967. | MR
,[11] Dynamics of partial differential equations in thin domains. Lecture Notes in Mathematics, Springer-Verlag, Berlin 1995, 1609, 208-315. | DOI | MR | Zbl
,