Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_1997_9_8_2_a1, author = {Da Prato, Giuseppe}, title = {Characterization of the domain of an elliptic operator of infinitely many variables in \( {L^{2}(\mu)} \) spaces}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {101--105}, publisher = {mathdoc}, volume = {Ser. 9, 8}, number = {2}, year = {1997}, zbl = {0899.47035}, mrnumber = {1602247}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_1997_9_8_2_a1/} }
TY - JOUR AU - Da Prato, Giuseppe TI - Characterization of the domain of an elliptic operator of infinitely many variables in \( L^{2}(\mu) \) spaces JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 1997 SP - 101 EP - 105 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_1997_9_8_2_a1/ LA - en ID - RLIN_1997_9_8_2_a1 ER -
%0 Journal Article %A Da Prato, Giuseppe %T Characterization of the domain of an elliptic operator of infinitely many variables in \( L^{2}(\mu) \) spaces %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 1997 %P 101-105 %V 8 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_1997_9_8_2_a1/ %G en %F RLIN_1997_9_8_2_a1
Da Prato, Giuseppe. Characterization of the domain of an elliptic operator of infinitely many variables in \( L^{2}(\mu) \) spaces. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 8 (1997) no. 2, pp. 101-105. http://geodesic.mathdoc.fr/item/RLIN_1997_9_8_2_a1/
[1] Perturbations of Ornstein-Uhlenbeck semigroups. Preprint Scuola Normale Superiore n. 39, Pisa 1996; Rendiconti del Seminario Matematico di Trieste, to appear. | MR | Zbl
,[2] Regularity results for Kolmogorov equations in \( L^{2} (H,\mu) \) spaces and applications. Preprint Scuola Normale Superiore n. 40, Pisa 1996; Ukrainian Mathematical Journal, to appear.
,[3] Ergodicity for infinite dimensions. Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1996. | DOI | MR | Zbl
- ,[4] On the Ornstein-Uhlenbeck operator in \( L^{2} \) spaces with respect to invariant measures. Preprint Scuola Normale Superiore, Pisa 1995; Trans. Amer. Math. Soc., to appear. | DOI | MR | Zbl
,[5] Introduction to the theory of (non symmetric) Dirichlet forms. Springer-Verlag, 1992. | DOI | MR | Zbl
- ,