Doubly asymptotic trajectories of Lagrangian systems and a problem by Kirchhoff
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 8 (1997) no. 2, pp. 93-100.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We consider Lagrangian systems with Lagrange functions which exhibit a quadratic time dependence. We prove the existence of infinitely many solutions tending, as \( t \rightarrow \pm \infty \), to an «equilibrium at infinity». This result is applied to the Kirchhoff problem of a heavy rigid body moving through a boundless incompressible ideal fluid, which is at rest at infinity and has zero vorticity.
Consideriamo sistemi lagrangiani con funzione lagrangiana dipendente in modo quadratico dal tempo. Proviamo l'esistenza di infinite soluzioni che tendono, quando \( t \rightarrow \pm \infty \) ad un «equilibrio all'infinito». Il risultato è applicato al problema di Kirchhoff di un corpo rigido mobile in un fluido ideale incomprimibile illimitato, che è in quiete all'infinito ed ha vorticità nulla.
@article{RLIN_1997_9_8_2_a0,
     author = {Bertotti, Maria Letizia and Bolotin, Sergey V.},
     title = {Doubly asymptotic trajectories of {Lagrangian} systems and a problem by {Kirchhoff}},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {93--100},
     publisher = {mathdoc},
     volume = {Ser. 9, 8},
     number = {2},
     year = {1997},
     zbl = {0892.70012},
     mrnumber = {923953},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1997_9_8_2_a0/}
}
TY  - JOUR
AU  - Bertotti, Maria Letizia
AU  - Bolotin, Sergey V.
TI  - Doubly asymptotic trajectories of Lagrangian systems and a problem by Kirchhoff
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1997
SP  - 93
EP  - 100
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1997_9_8_2_a0/
LA  - en
ID  - RLIN_1997_9_8_2_a0
ER  - 
%0 Journal Article
%A Bertotti, Maria Letizia
%A Bolotin, Sergey V.
%T Doubly asymptotic trajectories of Lagrangian systems and a problem by Kirchhoff
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1997
%P 93-100
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1997_9_8_2_a0/
%G en
%F RLIN_1997_9_8_2_a0
Bertotti, Maria Letizia; Bolotin, Sergey V. Doubly asymptotic trajectories of Lagrangian systems and a problem by Kirchhoff. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 8 (1997) no. 2, pp. 93-100. http://geodesic.mathdoc.fr/item/RLIN_1997_9_8_2_a0/

[1] V. I. Arnold - V. V. Kozlov - A. I. Neishtadt, Dynamical systems III. VINITI, Moscow 1985; English transl. in Springer-Verlag, New York-Heidelberg-Berlin 1988. | DOI | MR

[2] M. L. Bertotti - S. V. Bolotin, Doubly asymptotic trajectories of Lagrangian systems in homogeneous force fields. Annali di Matematica Pura e Applicata, in press. | Zbl

[3] S. V. Bolotin, The existence of homoclinic motions. Vestnik Moskov Univ., ser. I, Matem., Mekhan., 6, 1983, 98-103 (in Russian); English transl. in Moscow Univ. Math. Boll., 38, 1983, 117-123. | MR | Zbl

[4] S. V. Bolotin - V. V. Kozlov, On the asymptotic solutions of the equations of dynamics. Vestnik Moskov Univ., ser. I, Matem., Mekhan., 4, 1980, 84-89 (in Russian); English transl. in Moscow Univ. Math. Boll., 35, 1980, 82-88. | MR | Zbl

[5] S. A. Chaplygin, On the motion of heavy bodies in an incompressible fluid, Collected papers 1. Izd-vo Akad. Nauk SSSR, Leningrad 1933, 133-150 (in Russian).

[6] J. Eells, A setting for global analysis. Bull. Amer. Math. Soc., 72, 1966, 751-807. | fulltext mini-dml | MR | Zbl

[7] F. Giannoni - P. H. Rabinowttz, On the multiplicity of homoclinic orbits on Riemannian manifolds for a class of second order Hamiltonian systems. Nonlinear Differential Equations and Applications, 1, 1993, 1-46. | DOI | MR | Zbl

[8] P. Hagedorn, Über die Instabilität konservativer Systeme mit gyroskopischen Kräften. Arch. Rat. Mech. Anal., 58, 1975, 1-9. | MR | Zbl

[9] G. Kirchhoff, Über die Bewegung eines Rotationskörpers in einer Flüssigkeit. J. für die reine und angewandte Mathematik, 71, 1870, 237-262. | fulltext EuDML | Jbk 02.0731.01

[10] V. V. Kozlov, On the fall of an heavy rigid body in a ideal fluid. Meck. Tverd. Tela, 5, 1989, 10-17 (in Russian). | Zbl

[11] V. V. Kozlov, On the stability of equilibrium positions in nonstationary force fields. J. Appl. Math. Mech., 55, 1991, 8-13. | DOI | MR | Zbl

[12] H. Lamb, Hydrodynamics. Dover Publications, New York 1945. | Jbk 36.0817.07

[13] R. S. Palais, Morse theory on Hilbert manifolds. Topology, 2, 1963, 299-340. | MR | Zbl

[14] R. S. Palais - S. Smale, A generalized Morse theory. Bull. Amer. Math. Soc., 70, 1964, 165-171. | fulltext mini-dml | MR | Zbl