Variational convergence of nonlinear diffusion equations: applications to concentrated capacity problems with change of phase
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 8 (1997) no. 1, pp. 49-89.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We study a variational formulation for a Stefan problem in two adjoining bodies, when the heat conductivity of one of them becomes infinitely large. We study the «concentrated capacity» model arising in the limit, and we justify it by an asymptotic analysis, which is developed in the general framework of the abstract evolution equations of monotone type.
Si studia la formulazione variazionale del problema di Stefan in due corpi adiacenti, in uno dei quali la conducibilità termica tende all'infinito. Utilizzando e sviluppando alcuni concetti e metodi della teoria della \( \Gamma \)-convergenza e delle equazioni di evoluzione astratte negli spazi di Hilbert, si riesce a giustificare il modello limite, che rientra nella classe dei problemi in «capacità concentrata».
@article{RLIN_1997_9_8_1_a3,
     author = {Savar\'e, Giuseppe and Visintin, Augusto},
     title = {Variational convergence of nonlinear diffusion equations: applications to concentrated capacity problems with change of phase},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {49--89},
     publisher = {mathdoc},
     volume = {Ser. 9, 8},
     number = {1},
     year = {1997},
     zbl = {0888.35139},
     mrnumber = {853383},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1997_9_8_1_a3/}
}
TY  - JOUR
AU  - Savaré, Giuseppe
AU  - Visintin, Augusto
TI  - Variational convergence of nonlinear diffusion equations: applications to concentrated capacity problems with change of phase
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1997
SP  - 49
EP  - 89
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1997_9_8_1_a3/
LA  - en
ID  - RLIN_1997_9_8_1_a3
ER  - 
%0 Journal Article
%A Savaré, Giuseppe
%A Visintin, Augusto
%T Variational convergence of nonlinear diffusion equations: applications to concentrated capacity problems with change of phase
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1997
%P 49-89
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1997_9_8_1_a3/
%G en
%F RLIN_1997_9_8_1_a3
Savaré, Giuseppe; Visintin, Augusto. Variational convergence of nonlinear diffusion equations: applications to concentrated capacity problems with change of phase. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 8 (1997) no. 1, pp. 49-89. http://geodesic.mathdoc.fr/item/RLIN_1997_9_8_1_a3/

[1] E. Acerbi - G. Buttazzo, Reinforcement problems in the calculus of variations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 3, 1986, 273-284. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[2] D. Andreucci, Existence and uniqueness of solutions to a concentrated capacity problem with change of phase. Europ. J. Appl. Math., 1, 1990, 330-351. | DOI | MR | Zbl

[3] H. Attouch, Variational Convergence for Functions and Operators. Pitman, London 1984. | MR | Zbl

[4] T. Aubin, Non linear Analysis on Manifolds. Monge-Ampère Equations. Springer, New York 1982. | Zbl

[5] H. Brezis, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations. Proc. Symp. by the Mathematics Research Center, Madison, Wisconsin, Academic Press, New York 1971, 101-156. | MR | Zbl

[6] H. Brezis, Opérateurs maximaux monotones et sémi-groupes de contractions dans les espaces de Hilbert. North Holland, Amsterdam 1973. | Zbl

[7] H. Brezis - L. A. Caffarelli - A. Friedman, Reinforcement problems for elliptic equations and variational inequalities. Ann. Mat. pura e appl., 123 (IV), 1980, 219-246. | DOI | MR | Zbl

[8] J. R. Cannon - G. H. Meyer, On diffusion in a fractured medium. SIAM J. Appl. Math., 20(3), 1971, 434-448. | Zbl

[9] P. G. Ciarlet, Plates and junctions in Elastic Multi-Structures. Masson-Springer-Verlag, Paris 1990. | MR | Zbl

[10] F. H. Clarke, Optimization and Nonsmooth Analysis. Wiley, New York 1983. | MR | Zbl

[11] P. Colli - J. F. Rodrigues, Diffusion through thin layers with high specific heat. Asymptotic Anal., 3, 1990, 249-263. | MR | Zbl

[12] G. Dal Maso, An Introduction to \( \Gamma \)-Convergence. Birkhäuser, Boston 1993. | DOI | MR

[13] A. Damlamian, Some results on the multi-phase Stefan problem. Comm. P.D.E., 2, 1977, 1017-1044. | MR | Zbl

[14] A. Damlamian, How to homogenize a nonlinear diffusion equation: Stefan's problem. SIAM J. Math. Anal., 12, 1981, 306-313. | DOI | MR | Zbl

[15] M. C. Delfour - J. P. Zolésio, Shape analysis via oriented distance functions. J. Funct. Anal., 86, 1989, 129-201. | DOI | MR | Zbl

[16] M. C. Delfour - J. P. Zolésio, A boundary differential equation for thin shells. J. Differential Equations, to appear. | Zbl

[17] E. Di Benedetto - R. E. Showalter, Implicit degenerate evolution equations and applications. SIAM J. Math. Anal., 12, 1981, 731-751. | DOI | MR | Zbl

[18] I. Ekeland - R. Temam, Analyse Convexe et Problèmes Variationnels. Dunod, Gauthier-Villars, Paris 1974. | MR | Zbl

[19] L. C. Evans - R. Gariepy, Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics, CRC Press, 1992. | MR | Zbl

[20] A. Fasano - M. Primicerio - L. Rubinstein, A model problem for heat conduction with a free boundary in a concentrated capacity. J. Inst. Maths. Applics., 26, 1980, 327-347. | MR | Zbl

[21] D. Gilbarg - N. S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin 1983. | MR | Zbl

[22] H. Le Dret, Problèmes variationnels dans les multi-domaines. Masson, Paris 1991. | MR

[23] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non-linéaires. Dunod, Gauthier-Villars, Paris 1969. | MR | Zbl

[24] J. L. Lions - E. Magenes, Non Homogeneous Boundary Value Problems and Applications I, II. Springer Verlag, Berlin 1972. | Zbl

[25] E. Magenes, On a Stefan problem on a boundary of a domain. In: M. MIRANDA (ed.), Partial Differential Equations and Related Subjects. Longman Scient. Techn., 1992, 209-226. | MR | Zbl

[26] E. Magenes, Some new results on a Stefan problem in a concentrated capacity. Rend. Mat. Acc. Lincei, s. 9, v. 3, 1992, 23-34. | fulltext bdim | fulltext mini-dml | MR | Zbl

[27] E. Magenes, The Stefan problem in a concentrated capacity. In: P. E. RICCI (ed.), Atti Simp. Int. «Problemi attuali dell'Analisi e della Fisica Matematica». Dip. di Matematica, Univ. «La Sapienza», Roma 1993, 155-182. | MR | Zbl

[28] E. Magenes, Regularity and approximation properties for the solution of a Stefan problem in a concentrated capacity. Proc. Int. Workshop Variational Methods, Nonlinear Analysis and Differential Equations. E.C.I.G., Genova, 1994, 88-106.

[29] E. Magenes, On a Stefan problem in a concentrated capacity. In: P. MARCELLINI - G. TALENTI - E. VESENTINI (eds.), P.D.E. and Applications. Marcel Dekker, Inc., 1996, 237-253. | MR | Zbl

[30] E. Magenes, Stefan problems in a concentrated capacity. Adv. Math. Comp. and Appl., Proc. AMCA 95, N.C.C. Pubbl., Novosibirsk 1996, 82-90. | MR | Zbl

[31] U. Mosco, Convergence of convex sets and of solutions of variational inequalities. Adv. in Math., 3, 1969, 510-585. | MR | Zbl

[32] U. Mosco, On the continuity of the Young-Fenchel transformation. J. Math. Anal. Appl., 35, 1971, 518-535. | MR | Zbl

[33] H. Pham Huy - E. Sanchez-Palencia, Phénomènes de transmission à travers des couches minces de conductivité élevée. J. Math. Anal, and Appl., 47, 1974, 284-309. | MR | Zbl

[34] L. Rubinstein, The Stefan problem: Comments on its present state. J. Inst. Maths. Applics., 24, 1979, 259-277. | MR | Zbl

[35] E. Sanchez-Palencia, Problèmes de perturbations liés aux phénomènes de conduction à travers des couches minces de grande résistivité. J. Math. pures et appl., 53, 1974, 251-270. | MR | Zbl

[36] E. Sanchez-Palencia, Non Homogeneous Media and Vibration Theory. Lect. Notes in Phys. 127, Springer, Berlin-Heidelberg-New York 1980. | MR | Zbl

[37] M. Shillor, Existence and continuity of a weak solution to the problem of a free boundary in a concentrated capacity. Proc. Roy. Soc. Edinburgh, Sect. A. 100, 1985, 271-280. | DOI | MR | Zbl

[38] A. Visintin, Partial differential equations in domains with self contact. Rend. Sem. Mat. Univ. Padova, 81, 1989, 37-48. | fulltext EuDML | fulltext mini-dml | MR | Zbl