The growth of solutions of algebraic differential equations
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 7 (1996) no. 2, pp. 67-73
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
Suppose that \( f(z) \) is a meromorphic or entire function satisfying \( P(z, f, f', \ldots , f^{(n)}) = 0 \) where \( P \) is a polynomial in all its arguments. Is there a limitation on the growth of \( f \), as measured by its characteristic \( T(r, f) \)? In general the answer to this question is not known. Theorems of Gol'dberg, Steinmetz and the author give a positive answer in certain cases. Some illustrative examples are also given.
@article{RLIN_1996_9_7_2_a1,
author = {Hayman, Walter K.},
title = {The growth of solutions of algebraic differential equations},
journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
pages = {67--73},
publisher = {mathdoc},
volume = {Ser. 9, 7},
number = {2},
year = {1996},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RLIN_1996_9_7_2_a1/}
}
TY - JOUR AU - Hayman, Walter K. TI - The growth of solutions of algebraic differential equations JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 1996 SP - 67 EP - 73 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_1996_9_7_2_a1/ LA - en ID - RLIN_1996_9_7_2_a1 ER -
%0 Journal Article %A Hayman, Walter K. %T The growth of solutions of algebraic differential equations %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 1996 %P 67-73 %V 7 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_1996_9_7_2_a1/ %G en %F RLIN_1996_9_7_2_a1
Hayman, Walter K. The growth of solutions of algebraic differential equations. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 7 (1996) no. 2, pp. 67-73. http://geodesic.mathdoc.fr/item/RLIN_1996_9_7_2_a1/