Regularity properties of solutions of elliptic equations in \( \mathbb{R}^{2} \) in limit cases
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 6 (1995) no. 4, pp. 237-250.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this paper the Dirichlet problem for a linear elliptic equation in an open, bounded subset of \( \mathbb{R}^{2} \) is studied. Regularity properties of the solutions are proved, when the data are \( L^{1} \)-functions or Radon measures. In particular sharp assumptions which guarantee the continuity of solutions are given.
In questa Nota si studia il problema di Dirichlet per un'equazione lineare ellittica in un insieme aperto, limitato di \( \mathbb{R}^{2} \). Sono provate proprietà di regolarità per le soluzioni, quando i dati sono funzioni di \( L^{1} \) oppure misure di Radon. In particolare sono date ipotesi ottimali che garantiscono la continuità delle soluzioni.
@article{RLIN_1995_9_6_4_a2,
     author = {Alberico, Angela and Ferone, Vincenzo},
     title = {Regularity properties of solutions of elliptic equations in \( {\mathbb{R}^{2}} \) in limit	cases},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {237--250},
     publisher = {mathdoc},
     volume = {Ser. 9, 6},
     number = {4},
     year = {1995},
     zbl = {0860.35015},
     mrnumber = {960950},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_4_a2/}
}
TY  - JOUR
AU  - Alberico, Angela
AU  - Ferone, Vincenzo
TI  - Regularity properties of solutions of elliptic equations in \( \mathbb{R}^{2} \) in limit	cases
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1995
SP  - 237
EP  - 250
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_4_a2/
LA  - en
ID  - RLIN_1995_9_6_4_a2
ER  - 
%0 Journal Article
%A Alberico, Angela
%A Ferone, Vincenzo
%T Regularity properties of solutions of elliptic equations in \( \mathbb{R}^{2} \) in limit	cases
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1995
%P 237-250
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_4_a2/
%G en
%F RLIN_1995_9_6_4_a2
Alberico, Angela; Ferone, Vincenzo. Regularity properties of solutions of elliptic equations in \( \mathbb{R}^{2} \) in limit	cases. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 6 (1995) no. 4, pp. 237-250. http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_4_a2/

[1] D. R. Adams, A sharp inequality of J. Moser for higher order derivatives. Annals of Math., 128, 1988, 385-398. | DOI | MR | Zbl

[2] A. Alvino, Un caso limite della disuguaglianza di Sobolev in spazi di Lorentz. Rend. Acc. Sci. Fis. Mat. Napoli, 44, 1977, 105-112. | Zbl

[3] A. Alvino, Formule di maggiorazione e regolarizzazione per soluzioni di equazioni ellittiche del secondo ordine in un caso limite. Atti Acc. Lincei Rend, fis., s. 8, vol. 52, 1977, 335-340. | Zbl

[4] A. Alvino - V. Ferone - G. Trombetti, Moser-type inequalities in Lorentz spaces. Potential Anal., to appear. | DOI | MR | Zbl

[5] C. Bennett - K. Rudnick, On Lorentz-Zygmund spaces. Dissert. Math., 175, 1980, 1-67. | MR | Zbl

[6] L. Boccardo - T. Gallouët, Non-linear elliptic and parabolic equations involving measures data. Journal of Functional Analysis, 87, 1989, 149-169. | Zbl

[7] L. Boccardo - F. Murat, A property of nonlinear elliptic equations when the right-hand side is a measure. Potential Anal., 3, 1994, 257-263. | DOI | MR | Zbl

[8] H. Brezis - F. Merle, Uniform estimates and blow-up behavior for solutions of \( — \Delta u = V(x) e^{u} \) in two dimensions. Comm. in P.D.E., 16, 1991, 1223-1253. | DOI | MR | Zbl

[9] H. Brezis - W. A. Strauss, Semi-linear second-order elliptic equations in \( L^{1} \). J. Math. Soc. Japan, 25, 1973, 565-590. | fulltext mini-dml | MR | Zbl

[10] S. Chanillo - Y. Y. Li, Continuity of solutions of uniformly elliptic equations in \( \mathbb{R}^{2} \). Manuscripta Math., 77, 1992, 415-433. | fulltext EuDML | DOI | MR | Zbl

[11] G. Chiti, Rearrangements of functions and convergence in Orlicz spaces. Appl. Anal., 9, 1979, 23-27. | DOI | MR | Zbl

[12] K. M. Chong - N. M. Rice, Equimeasurable rearrangements of functions. Queen's papers in pure and applied mathematics, no. 28, Queen's University, Ontario, 1971. | MR | Zbl

[13] V. Ferone, Estimates and regularity for solutions of elliptic equations in a limit case. Boll. U.M.I., (7) 8B, 1994, 257-270. | MR | Zbl

[14] V. Ferone - N. Fusco, Continuity properties of minimizers of integral functionals. J. Math. Anal. Appl., to appear. | DOI | MR | Zbl

[15] V. A. Liskevich, Some limit cases in estimates for solutions of second order elliptic equations. Houston J. Math., 19, 1993, 661-673. | MR | Zbl

[16] J. Serrin, Pathological solutions of elliptic differential equations. Ann. Scuola Norm. Sup. Pisa, (3) 18, 1964, 385-387. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[17] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier, Grenoble, 15, 1965, 189-258. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[18] G. Talenti, Elliptic equations and rearrangements. Ann. Scuola Norm. Sup. Pisa, (4) 3, 1976, 697-718. | fulltext EuDML | fulltext mini-dml | MR | Zbl