Boundary integral equations of the logarithmic potential theory for domains with peaks
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 6 (1995) no. 4, pp. 211-236.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Integral equations of boundary value problems of the logarithmic potential theory for a plane domain with several peaks at the boundary are studied. We present theorems on the unique solvability and asymptotic representations for solutions near peaks. We also find kernels of the integral operators in a class of functions with a weak power singularity and describe classes of uniqueness.
Vengono studiate le equazioni integrali dei problemi al contorno della teoria del potenziale logaritmico per un dominio piano con diverse cuspidi sul contorno. Vengono presentati teoremi sull'unicità della soluzione e sulle rappresentazioni asintotiche delle soluzioni in prossimità delle cuspidi. Vengono anche considerati nuclei di operatori integrali in una classe di funzioni con singolarità debole e descritte le classi per l'unicità della soluzione. 1. INTRODUCTION
@article{RLIN_1995_9_6_4_a1,
     author = {Soloviev, Alexander A.},
     title = {Boundary integral equations of the logarithmic potential theory for domains with peaks},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {211--236},
     publisher = {mathdoc},
     volume = {Ser. 9, 6},
     number = {4},
     year = {1995},
     zbl = {0865.35027},
     mrnumber = {1098507},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_4_a1/}
}
TY  - JOUR
AU  - Soloviev, Alexander A.
TI  - Boundary integral equations of the logarithmic potential theory for domains with peaks
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1995
SP  - 211
EP  - 236
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_4_a1/
LA  - en
ID  - RLIN_1995_9_6_4_a1
ER  - 
%0 Journal Article
%A Soloviev, Alexander A.
%T Boundary integral equations of the logarithmic potential theory for domains with peaks
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1995
%P 211-236
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_4_a1/
%G en
%F RLIN_1995_9_6_4_a1
Soloviev, Alexander A. Boundary integral equations of the logarithmic potential theory for domains with peaks. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 6 (1995) no. 4, pp. 211-236. http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_4_a1/

[1] V. Maz'Ya, Boundary Integral Equations. Encyclopedia of Mathematical Sciences, Springer-Verlag, Berlin-Heidelberg 1991. | DOI | MR | Zbl

[2] J. Radon, Über die Randwertaufgaben beim logarithmischen Potential. S.-B. Akad. Wiss. Wien Math.-Nat. Kl, 128, 1919; Abt. IIa, 1123-1167. | Jbk 47.0457.01

[3] V. Maz'Ya - A. A. Soloviev, On the integral equation of the Dirichlet problem in a plane domain with peaks at the boundary. Matem. Sbornik, 180, n. 9, 1989, 1211-1233; English transl. in Math. USSR Sbornik, vol. 68, n. 1, 1991, 61-83. | MR | Zbl

[4] V. Maz'Ya - A. A. Soloviev, On the boundary integral equation of the Neumann problem in a domain with a peak. Trudy Leningrad. Mat. Ob., 1, 1990, 109-134; English transl. in Amer. Math. Soc. Transl., 155(2), 1993, 101-127. | MR | Zbl

[5] V. A. Kondratiev, Boundary value problems for elliptic equations in domains with conical or angular points. Trudy Moskov. Mat. Ob., 16, 1967, 209-292; English transl. in Trans. Moscow Math. Soc., 16, 1967, 227-313. | MR | Zbl

[6] S. Stoilov, Theory of Functions of a Complex Variable. Edit. Acad. Rep. Pop. Romaine, Bucharest 1954.

[7] V. I. Smirnov - N. A. Lebedev, Constructive Theory of Functions of a Complex Variable. M.I.T. Press, Cambridge, Massachusetts 1968. | MR | Zbl