On a variational theory of light rays on Lorentzian manifolds
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 6 (1995) no. 3, pp. 155-159.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this Note, by using a generalization of the classical Fermat principle, we prove the existence and multiplicity of lightlike geodesics joining a point with a timelike curve on a class of Lorentzian manifolds, satisfying a suitable compactness assumption, which is weaker than the globally hyperbolicity.
In questa Nota, usando una generalizzazione del principio di Fermat, si studia l'esistenza e la molteplicità di geodetiche di tipo luce congiungenti un punto con una curva di tipo tempo su una classe di varietà Lorentziane, soddisfacente una condizione di compattezza più debole della globale iperbolicità.
@article{RLIN_1995_9_6_3_a2,
     author = {Giannoni, Fabio and Masiello, Antonio},
     title = {On a variational theory of light rays on {Lorentzian} manifolds},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {155--159},
     publisher = {mathdoc},
     volume = {Ser. 9, 6},
     number = {3},
     year = {1995},
     zbl = {0848.53041},
     mrnumber = {619853},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_3_a2/}
}
TY  - JOUR
AU  - Giannoni, Fabio
AU  - Masiello, Antonio
TI  - On a variational theory of light rays on Lorentzian manifolds
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1995
SP  - 155
EP  - 159
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_3_a2/
LA  - en
ID  - RLIN_1995_9_6_3_a2
ER  - 
%0 Journal Article
%A Giannoni, Fabio
%A Masiello, Antonio
%T On a variational theory of light rays on Lorentzian manifolds
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1995
%P 155-159
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_3_a2/
%G en
%F RLIN_1995_9_6_3_a2
Giannoni, Fabio; Masiello, Antonio. On a variational theory of light rays on Lorentzian manifolds. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 6 (1995) no. 3, pp. 155-159. http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_3_a2/

[1] J. K. Beem - P. E. Ehrlich, Global Lorentzian Geometry. Marcel Dekker Inc., New York-Basel 1981. | MR | Zbl

[2] V. Benci - A. Masiello, A Morse index for geodesics in static Lorentz manifolds. Math. Ann., 293, 1992, 433-442. | fulltext EuDML | DOI | MR | Zbl

[3] V. Benci - D. Fortunato - A. Masiello, On the number of conjugate points along a geodesic of a Lorentzian manifold. Preprint.

[4] R. Bott, Lectures on Morse Theory old and new. Bull. Am. Math. Soc., 7, 1982, 331-358. | fulltext mini-dml | DOI | MR | Zbl

[5] E. Fadell - A. Husseini, Category of loop spaces of open subsets in Euclidean space. Nonlinear Analysis T.M.A., 17, 1991, 1153-1161. | DOI | MR | Zbl

[6] D. Fortunato - F. Giannoni - A. Masiello, A Fermat principle for stationary space-times, with applications to light rays. J. Geom. Phys., 15, 1995, 159-188. | DOI | MR | Zbl

[7] R. Geroch, Domains of dependence. J. Math. Phys., 11, 1970, 437-449. | MR | Zbl

[8] F. Giannoni - A. Masiello, Morse Relations for geodesics on stationary Lorentzian manifolds with boundary. Topological Methods in Nonlinear Analysis, in press. | Zbl

[9] A. Helfer, Conjugate points on spacelike geodesics or Pseudo-Self-Adjoint Morse-Sturm-Liouville operators. Preprint. | fulltext mini-dml | Zbl

[10] A. Masiello, Variational Methods in Lorentzian Geometry. Pitman Research Notes in Mathematics, vol. 309, London 1994. | MR | Zbl

[11] J. Milnor, Morse Theory. Annals Math. Stud., vol. 51, Princeton University Press, Princeton 1963. | MR | Zbl

[12] M. Morse, The Calculus of Variations in the Large. Coll. Lect. Am. Math. Soc., vol. 18, 1934. | Zbl

[13] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity. Acad. Press Inc., New-York-London 1983. | Zbl

[14] R. Penrose, Techniques of Differential Topology in Relativity. Conf. Board Math. Sci., vol. 7, S.I.A.M., Philadelphia 1972. | MR | Zbl

[15] V. Perlick, On Fermat's principle in general relativity: I. The general case. Class. Quantum Grav., 7, 1990, 1319-1331. | MR | Zbl

[16] K. Uhlenbeck, A Morse Theory for geodesics on a Lorentz manifold. Topology, 14, 1975, 69-90. | MR | Zbl