Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_1995_9_6_3_a2, author = {Giannoni, Fabio and Masiello, Antonio}, title = {On a variational theory of light rays on {Lorentzian} manifolds}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {155--159}, publisher = {mathdoc}, volume = {Ser. 9, 6}, number = {3}, year = {1995}, zbl = {0848.53041}, mrnumber = {619853}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_3_a2/} }
TY - JOUR AU - Giannoni, Fabio AU - Masiello, Antonio TI - On a variational theory of light rays on Lorentzian manifolds JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 1995 SP - 155 EP - 159 VL - 6 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_3_a2/ LA - en ID - RLIN_1995_9_6_3_a2 ER -
%0 Journal Article %A Giannoni, Fabio %A Masiello, Antonio %T On a variational theory of light rays on Lorentzian manifolds %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 1995 %P 155-159 %V 6 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_3_a2/ %G en %F RLIN_1995_9_6_3_a2
Giannoni, Fabio; Masiello, Antonio. On a variational theory of light rays on Lorentzian manifolds. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 6 (1995) no. 3, pp. 155-159. http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_3_a2/
[1] Global Lorentzian Geometry. Marcel Dekker Inc., New York-Basel 1981. | MR | Zbl
- ,[2] A Morse index for geodesics in static Lorentz manifolds. Math. Ann., 293, 1992, 433-442. | fulltext EuDML | DOI | MR | Zbl
- ,[3] On the number of conjugate points along a geodesic of a Lorentzian manifold. Preprint.
- - ,[4] Lectures on Morse Theory old and new. Bull. Am. Math. Soc., 7, 1982, 331-358. | fulltext mini-dml | DOI | MR | Zbl
,[5] Category of loop spaces of open subsets in Euclidean space. Nonlinear Analysis T.M.A., 17, 1991, 1153-1161. | DOI | MR | Zbl
- ,[6] A Fermat principle for stationary space-times, with applications to light rays. J. Geom. Phys., 15, 1995, 159-188. | DOI | MR | Zbl
- - ,[7] Domains of dependence. J. Math. Phys., 11, 1970, 437-449. | MR | Zbl
,[8] Morse Relations for geodesics on stationary Lorentzian manifolds with boundary. Topological Methods in Nonlinear Analysis, in press. | Zbl
- ,[9] Conjugate points on spacelike geodesics or Pseudo-Self-Adjoint Morse-Sturm-Liouville operators. Preprint. | fulltext mini-dml | Zbl
,[10] Variational Methods in Lorentzian Geometry. Pitman Research Notes in Mathematics, vol. 309, London 1994. | MR | Zbl
,[11] Morse Theory. Annals Math. Stud., vol. 51, Princeton University Press, Princeton 1963. | MR | Zbl
,[12] The Calculus of Variations in the Large. Coll. Lect. Am. Math. Soc., vol. 18, 1934. | Zbl
,[13] Semi-Riemannian Geometry with Applications to Relativity. Acad. Press Inc., New-York-London 1983. | Zbl
,[14] Techniques of Differential Topology in Relativity. Conf. Board Math. Sci., vol. 7, S.I.A.M., Philadelphia 1972. | MR | Zbl
,[15] On Fermat's principle in general relativity: I. The general case. Class. Quantum Grav., 7, 1990, 1319-1331. | MR | Zbl
,[16] A Morse Theory for geodesics on a Lorentz manifold. Topology, 14, 1975, 69-90. | MR | Zbl
,