Teoremi di confronto tra diverse nozioni di movimento secondo la curvatura media
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 6 (1995) no. 1, pp. 45-54.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In questa Nota presentiamo alcuni teoremi di confronto tra il movimento secondo la curvatura media ottenuto con il metodo delle minime barriere di De Giorgi e i movimenti definiti con i metodi di Evans-Spruck, Chen-Giga-Goto, Giga-Goto-Ishii-Sato.
In this Note we state some comparison theorems between De Giorgi's definition of motion by mean curvature using the barriers method and the evolutions defined with the methods of Evans-Spruck, Chen-Giga-Goto, Giga-Goto-Ishii-Sato.
@article{RLIN_1995_9_6_1_a5,
     author = {Bellettini, Giovanni and Paolini, Maurizio},
     title = {Teoremi di confronto tra diverse nozioni di movimento secondo la curvatura media},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {45--54},
     publisher = {mathdoc},
     volume = {Ser. 9, 6},
     number = {1},
     year = {1995},
     zbl = {0834.35062},
     mrnumber = {1205983},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_1_a5/}
}
TY  - JOUR
AU  - Bellettini, Giovanni
AU  - Paolini, Maurizio
TI  - Teoremi di confronto tra diverse nozioni di movimento secondo la curvatura media
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1995
SP  - 45
EP  - 54
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_1_a5/
LA  - it
ID  - RLIN_1995_9_6_1_a5
ER  - 
%0 Journal Article
%A Bellettini, Giovanni
%A Paolini, Maurizio
%T Teoremi di confronto tra diverse nozioni di movimento secondo la curvatura media
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1995
%P 45-54
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_1_a5/
%G it
%F RLIN_1995_9_6_1_a5
Bellettini, Giovanni; Paolini, Maurizio. Teoremi di confronto tra diverse nozioni di movimento secondo la curvatura media. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 6 (1995) no. 1, pp. 45-54. http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_1_a5/

[1] F. Almgren - J. E. Taylor - L. Wang, Curvature-driven flows: a variational approach. SIAM J. Control Optim., 31, 1993, 387-437. | DOI | MR | Zbl

[2] L. Ambrosio - H.-M. Soner, A level set approach to the evolution of surfaces of any codimension. Preprint Scuola Normale Superiore di Pisa, Ottobre 1994.

[3] G. Barles - H.-M. Soner - P. E. Souganidis, Front propagation and phase field theory. SIAM J. Control Optim., 31, 1993, 439-469. | DOI | MR | Zbl

[4] G. Bellettini - M. Paolini, Two examples of fattening for the curvature flow with a driving force. Rend. Mat. Acc. Lincei, s. 9, v. 5, 1994, 229-236. | fulltext bdim | MR | Zbl

[5] G. Bellettini - M. Paolini, Some comparison results between different notions of motion by mean curvature. Rendiconti Accademia Nazionale delle Scienze detta dei XL, Memorie di Matematica, in corso di stampa.

[6] K. A. Brakke, The Motion of a Surface by its Mean Curvature. Princeton University Press, Princeton 1978. | MR | Zbl

[7] L. Bronsard - R. V. Kohn, Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics. J. Differential Equations, 90, 1991, 211-237. | DOI | MR | Zbl

[8] Y. G. Chen - Y. Giga - S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equation. J. Differential Geom., 33, 1991, 749-786. | fulltext mini-dml | MR | Zbl

[9] M. G. Crandall - H. Ishii - P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.), 27, 1992, 1-67. | fulltext mini-dml | DOI | MR | Zbl

[10] M. G. Crandall - P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc., 227, 1983, 1-42. | DOI | MR | Zbl

[11] E. De Giorgi, Some conjectures on flow by mean curvature. In: M. L. BENEVENTO - T. BRUNO - C. SBORDONE (eds.), Methods of Real Analysis and Partial Differential Equations. Liguori, Napoli 1990. | Zbl

[12] E. De Giorgi, Congetture sui limiti delle soluzioni di alcune equazioni paraboliche quasi lineari. In: Nonlinear Analysis. A Tribute in Honour of G. Prodi. S.N.S. Quaderni, Pisa 1991, 173-187. | Zbl

[13] E. De Giorgi, New problems on minimizing movements. In: J.-L. LIONS - C. BAIOCCHI (eds.), Boundary Value Problems for Partial Differential Equations and Applications. 29 Masson, Paris 1993. | MR | Zbl

[14] E. De Giorgi, Barriere, frontiere, e movimenti di varietà. Conferenza tenuta al Dipartimento di Matematica dell'Università di Pavia, 18 marzo 1994.

[15] P. De Mottoni - M. Schatzman, Geometrical evolution of developped interfaces. Trans. Amer. Math. Soc., in corso di stampa. | Zbl

[16] L. C. Evans - H.-M. Soner - P. E. Souganidis, Phase transitions and generalized motion by mean curvature. Comm. Pure Appl. Math., 45, 1992, 1097-1123. | DOI | MR | Zbl

[17] L. C. Evans - J. Spruck, Motion of level sets by mean curvature. I. J. Differential Geom., 33, 1991, 635-681. | fulltext mini-dml | MR | Zbl

[18] L. C. Evans - J. Spruck, Motion of level sets by mean curvature. II. Trans. Amer. Math. Soc., 330, 1992, 321-332. | DOI | MR | Zbl

[19] L. C. Evans - J. Spruck, Motion of level sets by mean curvature. III. J. Geom. An., 2, 1992, 121-150. | DOI | MR | Zbl

[20] M. Gage, Curve shortening makes curves circular. Invent. Math., 76, 1984, 357-364. | fulltext EuDML | DOI | MR | Zbl

[21] M. Gage - R. Hamilton, The heat equations shrinking convex plane curves. J. Differential Geom., 23, 1986, 69-96. | fulltext mini-dml | MR | Zbl

[22] Y. Giga - S. Goto, Motion of hypersurfaces and geometric equations. J. Math. Soc. Japan, 44, 1992, 99-111. | fulltext mini-dml | DOI | MR | Zbl

[23] Y. Giga - S. Goto - H. Ishii, Global existence of weak solutions for interface equations coupled with diffusion equations. SIAM J. Math. Anal., 23, 1992, 821-835. | DOI | MR | Zbl

[24] Y. Giga - S. Goto - H. Ishii - M. H. Sato, Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains. Indiana Univ. Math. J., 40, 1991, 443-470. | DOI | MR | Zbl

[25] M. A. Grayson, The heat equation shrinks embedded plane curves to round points. J. Differential Geom., 26, 1987, 285-314. | fulltext mini-dml | MR | Zbl

[26] M. A. Grayson, Shortening embedded curves. Ann. of Math., 129, 1989, 71-111. | DOI | MR | Zbl

[27] G. Huisken, Flow by mean curvature of convex surfaces into spheres. J. Differential Geom., 20, 1984, 237-266. | fulltext mini-dml | MR | Zbl

[28] T. Ilmanen, The level-set flow on a manifold. In: Proceedings of Symposia in Pure Mathematics. Amer. Math. Soc., 54, Part I, 1993, 193-204. | MR | Zbl

[29] T. Ilmanen, Generalized flow of sets by mean curvature on a manifold. Indiana Univ. Math. J., 41, 3, 1992, 671-705. | DOI | MR | Zbl

[30] T. Ilmanen, Convergence of the Allen-Cahn equation to Brakkes motion by mean curvature. J. Differential Geom., 38, 1993, 417-461. | fulltext mini-dml | MR | Zbl

[31] T. Ilmanen, Elliptic Regularization and Partial Regularity for Motion by Mean Curvature. Memoirs of the Amer. Math. Soc., 250, 1994, 1-90. | MR | Zbl

[32] H. Ishii, On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDE's. Comm. Pure Appl. Math., 42, 1989, 15-45. | DOI | MR | Zbl

[33] R. Jensen, The maximum principle for viscosity solutions of second-order fully nonlinear partial differential equations. Arch. Rational Mech. Anal., 101, 1988, 1-27. | DOI | MR | Zbl

[34] P.-L. Lions, Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations, I. Comm. Partial Differential Equations, 8, 1983, 1101-1134. | DOI | MR | Zbl

[35] L. Modica - S. Mortola, Un esempio di \( \Gamma \)-convergenza. Boll. Un. Mat. Ital., B (5), 14, 1977, 285-299. | MR | Zbl

[36] S. Osher - J. A. Sethian, Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys., 79, 1988, 12-49. | DOI | MR | Zbl

[37] H.-M. Soner, Motion of a set by the curvature of its boundary. J. Differential Equations, 101, 1993, 313-372. | DOI | MR | Zbl

[38] H.-M. Soner, Ginzburg-Landau equation and motion by mean curvature, I: convergence. Research report n. 93-NA-026, August 1993, Carnegie Mellon University. | Zbl

[39] H.-M. Soner - P. E. Souganidis, Singularities and uniqueness of cylindrically symmetric surfaces moving by mean curvature. Comm. Partial Differential Equations, 18, 1993, 859-894. | DOI | MR | Zbl