Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_1995_9_6_1_a5, author = {Bellettini, Giovanni and Paolini, Maurizio}, title = {Teoremi di confronto tra diverse nozioni di movimento secondo la curvatura media}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {45--54}, publisher = {mathdoc}, volume = {Ser. 9, 6}, number = {1}, year = {1995}, zbl = {0834.35062}, mrnumber = {1205983}, language = {it}, url = {http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_1_a5/} }
TY - JOUR AU - Bellettini, Giovanni AU - Paolini, Maurizio TI - Teoremi di confronto tra diverse nozioni di movimento secondo la curvatura media JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 1995 SP - 45 EP - 54 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_1_a5/ LA - it ID - RLIN_1995_9_6_1_a5 ER -
%0 Journal Article %A Bellettini, Giovanni %A Paolini, Maurizio %T Teoremi di confronto tra diverse nozioni di movimento secondo la curvatura media %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 1995 %P 45-54 %V 6 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_1_a5/ %G it %F RLIN_1995_9_6_1_a5
Bellettini, Giovanni; Paolini, Maurizio. Teoremi di confronto tra diverse nozioni di movimento secondo la curvatura media. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 6 (1995) no. 1, pp. 45-54. http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_1_a5/
[1] Curvature-driven flows: a variational approach. SIAM J. Control Optim., 31, 1993, 387-437. | DOI | MR | Zbl
- - ,[2] A level set approach to the evolution of surfaces of any codimension. Preprint Scuola Normale Superiore di Pisa, Ottobre 1994.
- ,[3] Front propagation and phase field theory. SIAM J. Control Optim., 31, 1993, 439-469. | DOI | MR | Zbl
- - ,[4] Two examples of fattening for the curvature flow with a driving force. Rend. Mat. Acc. Lincei, s. 9, v. 5, 1994, 229-236. | fulltext bdim | MR | Zbl
- ,[5] Some comparison results between different notions of motion by mean curvature. Rendiconti Accademia Nazionale delle Scienze detta dei XL, Memorie di Matematica, in corso di stampa.
- ,[6] The Motion of a Surface by its Mean Curvature. Princeton University Press, Princeton 1978. | MR | Zbl
,[7] Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics. J. Differential Equations, 90, 1991, 211-237. | DOI | MR | Zbl
- ,[8] Uniqueness and existence of viscosity solutions of generalized mean curvature flow equation. J. Differential Geom., 33, 1991, 749-786. | fulltext mini-dml | MR | Zbl
- - ,[9] User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.), 27, 1992, 1-67. | fulltext mini-dml | DOI | MR | Zbl
- - ,[10] Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc., 227, 1983, 1-42. | DOI | MR | Zbl
- ,[11] Some conjectures on flow by mean curvature. In: M. L. BENEVENTO - T. BRUNO - C. SBORDONE (eds.), Methods of Real Analysis and Partial Differential Equations. Liguori, Napoli 1990. | Zbl
,[12] Congetture sui limiti delle soluzioni di alcune equazioni paraboliche quasi lineari. In: Nonlinear Analysis. A Tribute in Honour of G. Prodi. S.N.S. Quaderni, Pisa 1991, 173-187. | Zbl
,[13] New problems on minimizing movements. In: J.-L. LIONS - C. BAIOCCHI (eds.), Boundary Value Problems for Partial Differential Equations and Applications. 29 Masson, Paris 1993. | MR | Zbl
,[14] Barriere, frontiere, e movimenti di varietà. Conferenza tenuta al Dipartimento di Matematica dell'Università di Pavia, 18 marzo 1994.
,[15] Geometrical evolution of developped interfaces. Trans. Amer. Math. Soc., in corso di stampa. | Zbl
- ,[16] Phase transitions and generalized motion by mean curvature. Comm. Pure Appl. Math., 45, 1992, 1097-1123. | DOI | MR | Zbl
- - ,[17] Motion of level sets by mean curvature. I. J. Differential Geom., 33, 1991, 635-681. | fulltext mini-dml | MR | Zbl
- ,[18] Motion of level sets by mean curvature. II. Trans. Amer. Math. Soc., 330, 1992, 321-332. | DOI | MR | Zbl
- ,[19] Motion of level sets by mean curvature. III. J. Geom. An., 2, 1992, 121-150. | DOI | MR | Zbl
- ,[20] Curve shortening makes curves circular. Invent. Math., 76, 1984, 357-364. | fulltext EuDML | DOI | MR | Zbl
,[21] The heat equations shrinking convex plane curves. J. Differential Geom., 23, 1986, 69-96. | fulltext mini-dml | MR | Zbl
- ,[22] Motion of hypersurfaces and geometric equations. J. Math. Soc. Japan, 44, 1992, 99-111. | fulltext mini-dml | DOI | MR | Zbl
- ,[23] Global existence of weak solutions for interface equations coupled with diffusion equations. SIAM J. Math. Anal., 23, 1992, 821-835. | DOI | MR | Zbl
- - ,[24] Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains. Indiana Univ. Math. J., 40, 1991, 443-470. | DOI | MR | Zbl
- - - ,[25] The heat equation shrinks embedded plane curves to round points. J. Differential Geom., 26, 1987, 285-314. | fulltext mini-dml | MR | Zbl
,[26] Shortening embedded curves. Ann. of Math., 129, 1989, 71-111. | DOI | MR | Zbl
,[27] Flow by mean curvature of convex surfaces into spheres. J. Differential Geom., 20, 1984, 237-266. | fulltext mini-dml | MR | Zbl
,[28] The level-set flow on a manifold. In: Proceedings of Symposia in Pure Mathematics. Amer. Math. Soc., 54, Part I, 1993, 193-204. | MR | Zbl
,[29] Generalized flow of sets by mean curvature on a manifold. Indiana Univ. Math. J., 41, 3, 1992, 671-705. | DOI | MR | Zbl
,[30] Convergence of the Allen-Cahn equation to Brakkes motion by mean curvature. J. Differential Geom., 38, 1993, 417-461. | fulltext mini-dml | MR | Zbl
,[31] Elliptic Regularization and Partial Regularity for Motion by Mean Curvature. Memoirs of the Amer. Math. Soc., 250, 1994, 1-90. | MR | Zbl
,[32] On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDE's. Comm. Pure Appl. Math., 42, 1989, 15-45. | DOI | MR | Zbl
,[33] The maximum principle for viscosity solutions of second-order fully nonlinear partial differential equations. Arch. Rational Mech. Anal., 101, 1988, 1-27. | DOI | MR | Zbl
,[34] Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations, I. Comm. Partial Differential Equations, 8, 1983, 1101-1134. | DOI | MR | Zbl
,[35] Un esempio di \( \Gamma \)-convergenza. Boll. Un. Mat. Ital., B (5), 14, 1977, 285-299. | MR | Zbl
- ,[36] Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys., 79, 1988, 12-49. | DOI | MR | Zbl
- ,[37] Motion of a set by the curvature of its boundary. J. Differential Equations, 101, 1993, 313-372. | DOI | MR | Zbl
,[38] Ginzburg-Landau equation and motion by mean curvature, I: convergence. Research report n. 93-NA-026, August 1993, Carnegie Mellon University. | Zbl
,[39] Singularities and uniqueness of cylindrically symmetric surfaces moving by mean curvature. Comm. Partial Differential Equations, 18, 1993, 859-894. | DOI | MR | Zbl
- ,