Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_1994_9_5_4_a4, author = {W{\l}odarczyk, Kazimierz}, title = {The existence of angular derivatives of holomorphic maps of {Siegel} domains in a generalization of \( {C^{*}} \)-algebras}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {309--328}, publisher = {mathdoc}, volume = {Ser. 9, 5}, number = {4}, year = {1994}, zbl = {0827.47030}, mrnumber = {542181}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_4_a4/} }
TY - JOUR AU - Włodarczyk, Kazimierz TI - The existence of angular derivatives of holomorphic maps of Siegel domains in a generalization of \( C^{*} \)-algebras JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 1994 SP - 309 EP - 328 VL - 5 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_4_a4/ LA - en ID - RLIN_1994_9_5_4_a4 ER -
%0 Journal Article %A Włodarczyk, Kazimierz %T The existence of angular derivatives of holomorphic maps of Siegel domains in a generalization of \( C^{*} \)-algebras %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 1994 %P 309-328 %V 5 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_4_a4/ %G en %F RLIN_1994_9_5_4_a4
Włodarczyk, Kazimierz. The existence of angular derivatives of holomorphic maps of Siegel domains in a generalization of \( C^{*} \)-algebras. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 5 (1994) no. 4, pp. 309-328. http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_4_a4/
[1] Pick-Julia theorems for operators. Math. Z., 168, 1979, 23-34. | fulltext EuDML | DOI | MR | Zbl
- ,[2] An Introduction to Classical Complex Analysis. Vol. I, Academic Press, New York-San Francisco 1979. | MR | Zbl
,[3] Über die Winkelderivierten von beschränkten analytischen Functionen. Sitz. Ber. Preuss. Akad., Phys.-Math., IV, 1929, 1-18. | Jbk 55.0209.02
,[4] Conformal Representations. Cambridge Tracts in Mathematics and Mathematical Physics, Cambridge 1952. | Zbl
,[5] Theory of Functions. Vol. 2, Chelsea Publishing Company, New York 1960. | Zbl
,[6] Sur les domaines bornés homogènes de l'espace de \( n \) variables complexes. Abh. Math. Sem. Univ. Hamburg, 11, 1935, 116-162. | Zbl
,[7] Inequalities for the angular derivative of an analytic function in the unit disk. J. London Math. Soc., (2), 26, 1982, 271-289. | DOI | MR | Zbl
- ,[8] The Schwarz Lemma. Oxford Mathematical Monographs, Clarendon Press, Oxford 1989. | MR | Zbl
,[9] On the angular derivative of regular functions. Math. Scand., 21, 1967, 122-127. | fulltext EuDML | MR | Zbl
,[10] Iteration of analytic functions of operators. Math. Z., 179, 1982, 293-298. | fulltext EuDML | DOI | MR | Zbl
,[11] The angular derivative of an operator-valued analytic function. Pacific J. Math., 121, 1986, 67-72. | fulltext mini-dml | MR | Zbl
,[12] Holomorphic Maps and Invariant Distances. North-Holland Mathematics Studies 40, Amsterdam-New York-Oxford 1980. | MR | Zbl
- ,[13] Functions with positive real part in a half plane. Duke Math. J., 29, 1962, 333-339. | fulltext mini-dml | MR | Zbl
,[14] Banach algebras with involution and Möbius transformations. J. Functional Anal., 11, 1972, 1-16. | MR | Zbl
,[15] Bounded Symmetric Homogeneous Domains in Infinite Dimensional Spaces. Lecture Notes in Mathematics, 364, Springer-Verlag, Berlin-Heidelberg-New York 1974, 13-40. | MR | Zbl
,[16] Operator Siegel domains. Proc. Roy. Soc. Edinburgh, 79 A, 1977, 137-156. | MR | Zbl
,[17] A generalization of \( C^{*} \)-algebras. Proc. London Math. Soc., (3), 41, 1981, 331- 361. | DOI | MR | Zbl
,[18] Linear fractional transformations of circular domains in operator spaces. Indiana Univ. Math. J., 41, 1992, 125-147. | DOI | MR | Zbl
,[19] On the theory of automorphic functions of a matrix variable I - Geometrical Basis. Amer. J. Math., 66, 1944, 470-488. | MR | Zbl
,[20] On the theory of automorphic functions of a matrix variable II - The classification of hypercircles under the symplectic group. Amer. J. Math., 66, 1944, 531-563. | MR | Zbl
,[21] Algebraic characterization of symmetric complex Banach manifolds. Math. Ann., 228, 1977, 39-64. | fulltext EuDML | MR | Zbl
,[22] Bounded symmetric domains in complex Hilbert spaces. Symp. Math., Istituto Nazionale di Alta Matematica Francesco Severi, 26, 1982, 11-21. | MR | Zbl
,[23] Inequalities for fixed points of holomorphic functions. Bull. London Math. Soc., 22, 1990, 446-452. | DOI | MR | Zbl
,[24] An Elementary Approach to Bounded Symmetric Domain. Rice Univ., Houston, Texas 1969. | MR | Zbl
,[25] Generalized Cayley transformations of bounded symmetric domains. Amer. J. Math., 87, 1965, 899-939. | MR | Zbl
- ,[26] Realization of hermitian symmetric spaces as generalized half-planes. Ann. of Math., 81, 1965, 265-288. | MR | Zbl
- ,[27] A deduction from Schwarzs lemma. J. London Math. Soc., 4, 1929, 162-163. | Jbk 55.0769.02 | DOI | MR
- ,[28] Jordan triple systems, \( R \)-spaces and bounded symmetric domains. Bull. Amer. Math. Soc., 77, 1971, 558-561. | fulltext mini-dml | MR | Zbl
,[29] Bounded symmetric domains and Jordan pairs. Univ. of California, Irvine 1977.
,[30] Angular derivatives and compact composition operators on the Hardy and Bergman spaces. Canadian J. Math., 38, 1986, 878-906. | DOI | MR | Zbl
- ,[31] Topology on Spaces of Holomorphic Mappings. Springer-Verlag, Berlin-Heidelberg-New York 1969. | MR | Zbl
,[32] Analytic Functions. Springer-Verlag, Berlin-Heidelberg-New York 1969. | MR | Zbl
,[33] Automorphic Functions and the Geometry of Classical Domains. Gordon-Breach, New York 1969. | MR | Zbl
,[34] Univalent Functions. Vandehoeck and Ruprecht, Göttingen 1975. | MR | Zbl
,[35] Function Theory in the Unit Ball of \( C^{n} \). Springer-Verlag, New York-Heidelberg-Berlin 1980. | MR | Zbl
,[36] Angular derivatives via Hilbert space. Complex Variables Theory Appl., 10, 1988, 1-10. | MR | Zbl
,[37] Composition Operators and Classical Function Theory. Springer-Verlag, New York 1993. | MR | Zbl
,[38] Symmetric Banach Manifolds and Jordan \( C^{*} \)-Algebras. North-Holland, Amsterdam, Math. Studies, vol. 104, 1985. | MR | Zbl
,[39] Jordan algebras in analysis, operator theory, and quantum mechanics. Regional Conference Series in Math., 67, Amer. Math. Soc., Providence, RI, 1987. | MR | Zbl
,[40] Fonctions analytiques. Presses Univ. de France, Paris 1954. | MR | Zbl
,[41] Su un teorema di Wolff e Denjoy. Rend. Sem. Mat. Fis. Milano, LIII, 1983, 17-25. | DOI | MR | Zbl
,[42] Remarks on the angular derivatives. Nagoya Math. J., 42, 1971, 19-32. | fulltext mini-dml | MR | Zbl
,[43] On holomorphic maps in Banach spaces and \( J^{*} \)-algebras. Quart. J. Math. Oxford, (2), 36, 1985, 495-511. | DOI | MR | Zbl
,[44] Pick-Julia theorems for holomorphic maps in \( J^{*} \)-algebras and Hilbert spaces. J. Math. Anal. Appl., 120, 1986, 567-571. | DOI | MR | Zbl
,[45] Studies of iterations of holomorphic maps in \( J^{*} \)-algebras and complex Hilbert spaces. Quart. J. Math. Oxford, (2), 37, 1986, 245-256. | DOI | MR | Zbl
,[46] Julia's lemma and Wolff's theorem for \( J^{*} \)-algebras and complex Hilbert spaces. Proc. Amer. Math. Soc., 99, 1987, 472-476. | Zbl
,[47] The angular derivative of Fréchet-holomorphic maps in \( J^{*} \)-algebras and complex Hilbert spaces. Proc. Kon. Nederl. Akad. Wetensch., A91, 1988, 455-468; Indag. Math., 50, 1988, 455-468. | MR | Zbl
,[48] Hyperbolic geometry in bounded symmetric homogeneous domains of \( J^{*} \)-algebras. Atti Sem. Mat. Fis. Univ. Modena, 39, 1991, 201-211. | MR | Zbl
,[49] The Julia-Carathéodory theorem for distance-decreasing maps on infinite dimensional hyperbolic spaces. Rend. Mat. Acc. Lincei., s. 9, 4, 1993, 171-179. | fulltext bdim | fulltext mini-dml | MR | Zbl
,[50] Angular limits and derivatives for holomorphic maps of infinite dimensional bounded homogeneous domains. Rend. Mat. Acc. Lincei, s. 9, 5, 1994, 43-53. | fulltext bdim | MR | Zbl
,