The existence of angular derivatives of holomorphic maps of Siegel domains in a generalization of \( C^{*} \)-algebras
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 5 (1994) no. 4, pp. 309-328.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The aim of this paper is to start a systematic investigation of the existence of angular limits and angular derivatives of holomorphic maps of infinite dimensional Siegel domains in \( J^{*} \)-algebras. Since \( J^{*} \)-algebras are natural generalizations of \( C^{*} \)-algebras, \( B^{*} \)-algebras, \( JC^{*} \)-algebras, ternary algebras and complex Hilbert spaces, various significant results follow. Examples are given.
Questo articolo ha lo scopo di avviare uno studio sistematico dell'esistenza di limiti e derivate angolari di mappe olomorfe di domini di Siegel di dimensione infinita in algebre \( J^{*} \). Poiché le algebre \( J^{*} \) sono generalizzazioni naturali di algebre \( C^{*} \), algebre \( B^{*} \), algebre \( JC^{*} \), algebre ternarie e spazi di Hilbert complessi, ne seguono diversi risultati significativi. Vengono esaminati alcuni esempi.
@article{RLIN_1994_9_5_4_a4,
     author = {W{\l}odarczyk, Kazimierz},
     title = {The existence of angular derivatives of holomorphic maps of {Siegel} domains in a generalization of \( {C^{*}} \)-algebras},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {309--328},
     publisher = {mathdoc},
     volume = {Ser. 9, 5},
     number = {4},
     year = {1994},
     zbl = {0827.47030},
     mrnumber = {542181},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_4_a4/}
}
TY  - JOUR
AU  - Włodarczyk, Kazimierz
TI  - The existence of angular derivatives of holomorphic maps of Siegel domains in a generalization of \( C^{*} \)-algebras
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1994
SP  - 309
EP  - 328
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_4_a4/
LA  - en
ID  - RLIN_1994_9_5_4_a4
ER  - 
%0 Journal Article
%A Włodarczyk, Kazimierz
%T The existence of angular derivatives of holomorphic maps of Siegel domains in a generalization of \( C^{*} \)-algebras
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1994
%P 309-328
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_4_a4/
%G en
%F RLIN_1994_9_5_4_a4
Włodarczyk, Kazimierz. The existence of angular derivatives of holomorphic maps of Siegel domains in a generalization of \( C^{*} \)-algebras. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 5 (1994) no. 4, pp. 309-328. http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_4_a4/

[1] T. Ando - Ky Fan, Pick-Julia theorems for operators. Math. Z., 168, 1979, 23-34. | fulltext EuDML | DOI | MR | Zbl

[2] R. B. Burckel, An Introduction to Classical Complex Analysis. Vol. I, Academic Press, New York-San Francisco 1979. | MR | Zbl

[3] C. Carathéodory, Über die Winkelderivierten von beschränkten analytischen Functionen. Sitz. Ber. Preuss. Akad., Phys.-Math., IV, 1929, 1-18. | Jbk 55.0209.02

[4] C. Carathéodory, Conformal Representations. Cambridge Tracts in Mathematics and Mathematical Physics, Cambridge 1952. | Zbl

[5] C. Carathéodory, Theory of Functions. Vol. 2, Chelsea Publishing Company, New York 1960. | Zbl

[6] E. Cartan, Sur les domaines bornés homogènes de l'espace de \( n \) variables complexes. Abh. Math. Sem. Univ. Hamburg, 11, 1935, 116-162. | Zbl

[7] C. C. Cowen - Ch. Pommerenke, Inequalities for the angular derivative of an analytic function in the unit disk. J. London Math. Soc., (2), 26, 1982, 271-289. | DOI | MR | Zbl

[8] S. Dineen, The Schwarz Lemma. Oxford Mathematical Monographs, Clarendon Press, Oxford 1989. | MR | Zbl

[9] B. G. Eke, On the angular derivative of regular functions. Math. Scand., 21, 1967, 122-127. | fulltext EuDML | MR | Zbl

[10] Ky Fan, Iteration of analytic functions of operators. Math. Z., 179, 1982, 293-298. | fulltext EuDML | DOI | MR | Zbl

[11] Ky Fan, The angular derivative of an operator-valued analytic function. Pacific J. Math., 121, 1986, 67-72. | fulltext mini-dml | MR | Zbl

[12] T. Franzoni - E. Vesentini, Holomorphic Maps and Invariant Distances. North-Holland Mathematics Studies 40, Amsterdam-New York-Oxford 1980. | MR | Zbl

[13] J. L. Goldberg, Functions with positive real part in a half plane. Duke Math. J., 29, 1962, 333-339. | fulltext mini-dml | MR | Zbl

[14] L. A. Harris, Banach algebras with involution and Möbius transformations. J. Functional Anal., 11, 1972, 1-16. | MR | Zbl

[15] L. A. Harris, Bounded Symmetric Homogeneous Domains in Infinite Dimensional Spaces. Lecture Notes in Mathematics, 364, Springer-Verlag, Berlin-Heidelberg-New York 1974, 13-40. | MR | Zbl

[16] L. A. Harris, Operator Siegel domains. Proc. Roy. Soc. Edinburgh, 79 A, 1977, 137-156. | MR | Zbl

[17] L. A. Harris, A generalization of \( C^{*} \)-algebras. Proc. London Math. Soc., (3), 41, 1981, 331- 361. | DOI | MR | Zbl

[18] L. A. Harris, Linear fractional transformations of circular domains in operator spaces. Indiana Univ. Math. J., 41, 1992, 125-147. | DOI | MR | Zbl

[19] L.-K. Hua, On the theory of automorphic functions of a matrix variable I - Geometrical Basis. Amer. J. Math., 66, 1944, 470-488. | MR | Zbl

[20] L.-K. Hua, On the theory of automorphic functions of a matrix variable II - The classification of hypercircles under the symplectic group. Amer. J. Math., 66, 1944, 531-563. | MR | Zbl

[21] W. Kaup, Algebraic characterization of symmetric complex Banach manifolds. Math. Ann., 228, 1977, 39-64. | fulltext EuDML | MR | Zbl

[22] W. Kaup, Bounded symmetric domains in complex Hilbert spaces. Symp. Math., Istituto Nazionale di Alta Matematica Francesco Severi, 26, 1982, 11-21. | MR | Zbl

[23] Y.-L. Kin, Inequalities for fixed points of holomorphic functions. Bull. London Math. Soc., 22, 1990, 446-452. | DOI | MR | Zbl

[24] M. Koecher, An Elementary Approach to Bounded Symmetric Domain. Rice Univ., Houston, Texas 1969. | MR | Zbl

[25] A. Koranyi - J. Wolff, Generalized Cayley transformations of bounded symmetric domains. Amer. J. Math., 87, 1965, 899-939. | MR | Zbl

[26] A. Koranyi - J. Wolff, Realization of hermitian symmetric spaces as generalized half-planes. Ann. of Math., 81, 1965, 265-288. | MR | Zbl

[27] E. Landau - G. Valiron, A deduction from Schwarzs lemma. J. London Math. Soc., 4, 1929, 162-163. | Jbk 55.0769.02 | DOI | MR

[28] O. Loos, Jordan triple systems, \( R \)-spaces and bounded symmetric domains. Bull. Amer. Math. Soc., 77, 1971, 558-561. | fulltext mini-dml | MR | Zbl

[29] O. Loos, Bounded symmetric domains and Jordan pairs. Univ. of California, Irvine 1977.

[30] B. D. Maccluer - J. H. Shapiro, Angular derivatives and compact composition operators on the Hardy and Bergman spaces. Canadian J. Math., 38, 1986, 878-906. | DOI | MR | Zbl

[31] L. Nachbin, Topology on Spaces of Holomorphic Mappings. Springer-Verlag, Berlin-Heidelberg-New York 1969. | MR | Zbl

[32] R. Nevanlinna, Analytic Functions. Springer-Verlag, Berlin-Heidelberg-New York 1969. | MR | Zbl

[33] I. I. Pjatetskij-Shapiro, Automorphic Functions and the Geometry of Classical Domains. Gordon-Breach, New York 1969. | MR | Zbl

[34] Ch. Pommerenke, Univalent Functions. Vandehoeck and Ruprecht, Göttingen 1975. | MR | Zbl

[35] W. Rudin, Function Theory in the Unit Ball of \( C^{n} \). Springer-Verlag, New York-Heidelberg-Berlin 1980. | MR | Zbl

[36] D. Sarason, Angular derivatives via Hilbert space. Complex Variables Theory Appl., 10, 1988, 1-10. | MR | Zbl

[37] J. H. Shapiro, Composition Operators and Classical Function Theory. Springer-Verlag, New York 1993. | MR | Zbl

[38] H. Upmeier, Symmetric Banach Manifolds and Jordan \( C^{*} \)-Algebras. North-Holland, Amsterdam, Math. Studies, vol. 104, 1985. | MR | Zbl

[39] H. Upmeier, Jordan algebras in analysis, operator theory, and quantum mechanics. Regional Conference Series in Math., 67, Amer. Math. Soc., Providence, RI, 1987. | MR | Zbl

[40] G. Valiron, Fonctions analytiques. Presses Univ. de France, Paris 1954. | MR | Zbl

[41] E. Vesentini, Su un teorema di Wolff e Denjoy. Rend. Sem. Mat. Fis. Milano, LIII, 1983, 17-25. | DOI | MR | Zbl

[42] E. Warschawski, Remarks on the angular derivatives. Nagoya Math. J., 42, 1971, 19-32. | fulltext mini-dml | MR | Zbl

[43] K. Włodarczyk, On holomorphic maps in Banach spaces and \( J^{*} \)-algebras. Quart. J. Math. Oxford, (2), 36, 1985, 495-511. | DOI | MR | Zbl

[44] K. Włodarczyk, Pick-Julia theorems for holomorphic maps in \( J^{*} \)-algebras and Hilbert spaces. J. Math. Anal. Appl., 120, 1986, 567-571. | DOI | MR | Zbl

[45] K. Włodarczyk, Studies of iterations of holomorphic maps in \( J^{*} \)-algebras and complex Hilbert spaces. Quart. J. Math. Oxford, (2), 37, 1986, 245-256. | DOI | MR | Zbl

[46] K. Włodarczyk, Julia's lemma and Wolff's theorem for \( J^{*} \)-algebras and complex Hilbert spaces. Proc. Amer. Math. Soc., 99, 1987, 472-476. | Zbl

[47] K. Włodarczyk, The angular derivative of Fréchet-holomorphic maps in \( J^{*} \)-algebras and complex Hilbert spaces. Proc. Kon. Nederl. Akad. Wetensch., A91, 1988, 455-468; Indag. Math., 50, 1988, 455-468. | MR | Zbl

[48] K. Włodarczyk, Hyperbolic geometry in bounded symmetric homogeneous domains of \( J^{*} \)-algebras. Atti Sem. Mat. Fis. Univ. Modena, 39, 1991, 201-211. | MR | Zbl

[49] K. Włodarczyk, The Julia-Carathéodory theorem for distance-decreasing maps on infinite dimensional hyperbolic spaces. Rend. Mat. Acc. Lincei., s. 9, 4, 1993, 171-179. | fulltext bdim | fulltext mini-dml | MR | Zbl

[50] K. Włodarczyk, Angular limits and derivatives for holomorphic maps of infinite dimensional bounded homogeneous domains. Rend. Mat. Acc. Lincei, s. 9, 5, 1994, 43-53. | fulltext bdim | MR | Zbl