On fixed points of \( C^{1} \) extensions of expanding maps in the unit disc
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 5 (1994) no. 4, pp. 303-308.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Using a result due to M. Shub, a theorem about the existence of fixed points inside the unit disc for \( C^{1} \) extensions of expanding maps defined on the boundary is established. An application to a special class of rational maps on the Riemann sphere and some considerations on ergodic properties of these maps are also made.
Sulla base di un risultato di M. Shub, si dimostra un teorema riguardante la presenza di punti fissi all'interno del disco unitario per estensioni \( C^{1} \) di funzioni espansive definite sul bordo. La Nota si conclude con un'applicazione ad una classe di funzioni razionali della sfera di Riemann e alcune considerazioni sulle proprietà ergodiche di tali funzioni.
@article{RLIN_1994_9_5_4_a3,
     author = {Tauraso, Roberto},
     title = {On fixed points of \( {C^{1}} \) extensions of expanding maps in the unit disc},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {303--308},
     publisher = {mathdoc},
     volume = {Ser. 9, 5},
     number = {4},
     year = {1994},
     zbl = {0827.30022},
     mrnumber = {1098711},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_4_a3/}
}
TY  - JOUR
AU  - Tauraso, Roberto
TI  - On fixed points of \( C^{1} \) extensions of expanding maps in the unit disc
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1994
SP  - 303
EP  - 308
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_4_a3/
LA  - en
ID  - RLIN_1994_9_5_4_a3
ER  - 
%0 Journal Article
%A Tauraso, Roberto
%T On fixed points of \( C^{1} \) extensions of expanding maps in the unit disc
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1994
%P 303-308
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_4_a3/
%G en
%F RLIN_1994_9_5_4_a3
Tauraso, Roberto. On fixed points of \( C^{1} \) extensions of expanding maps in the unit disc. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 5 (1994) no. 4, pp. 303-308. http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_4_a3/

[1] M. Abate, Iteration Theory of Holomorphic Maps on Taut Manifolds. Mediterranean Press, Commenda di Rende 1989. | MR | Zbl

[2] H. Brolin, Invariant sets under iteration of rational function. Ark. Mat., vol. 6, 1965, 103-144. | MR | Zbl

[3] R. F. Brown, The Lefschetz Fixed Point Theorem. Scott, Foresman and Co., Glenview 1971. | MR | Zbl

[4] R. F. Brown - R. E. Greene, An interior fixed point property of the disc. Amer. Math. Monthly, vol. 101, 1994, 39-47. | DOI | MR | Zbl

[5] R. F. Brown - R. E. Greene - H. Schirmer, Fixed points of map extension. In: Topological Fixed Point Theory and Applications. Prooceedings (Tianjin, 1988). Lecture Notes in Mathematics, vol. 1411, Springer-Verlag, Berlin 1989. | DOI | MR | Zbl

[6] R. B. Burckel, Iterating analytic self-maps of discs. Amer. Math. Monthly, vol. 88, 1981, 387-460. | DOI | MR | Zbl

[7] T. W. Gamelin - R. E. Greene, Introduction to Topology. Saunders College Publ., Philadelphia 1983. | MR | Zbl

[8] N. F. G. Martin, On Finite Blaschke Products whose restriction to the unit circle are exact endomorphisms. Bull. London Math. Soc., vol. 15, 1983, 343-348. | DOI | MR | Zbl

[9] Z. Nitecki, Differentiable Dynamics. The M.I.T. Press, Cambridge, Mass. 1971. | MR | Zbl

[10] C. Pommerenke, Boundary behaviour of Conformal Maps. Springer-Verlag, New York 1992. | MR | Zbl

[11] W. Rudin, Real and Complex Analysis. McGraw-Hill, New York 1966. | MR | Zbl

[12] M. Shub, Endomorphisms of compact differentiable manifolds. Amer. J. Math., vol. 91, 1969, 175-199. | MR | Zbl

[13] N. Steinmetz, Rational Iteration. De Gruyter, Berlin 1993. | DOI | MR | Zbl

[14] P. Walters, Invariant measures and equilibrium states for some mappings which expand distances. Trans. Amer. Math. Soc., vol. 236, 1978, 121-153. | MR | Zbl

[15] P. Walters, An Introduction to Ergodic Theory. Springer-Verlag, New York 1982. | MR | Zbl