Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_1994_9_5_4_a2, author = {DiBenedetto, Emmanuele and Vespri, Vincenzo}, title = {Continuity for bounded solutions of multiphase {Stefan} problem}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {297--302}, publisher = {mathdoc}, volume = {Ser. 9, 5}, number = {4}, year = {1994}, zbl = {0824.35142}, mrnumber = {837254}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_4_a2/} }
TY - JOUR AU - DiBenedetto, Emmanuele AU - Vespri, Vincenzo TI - Continuity for bounded solutions of multiphase Stefan problem JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 1994 SP - 297 EP - 302 VL - 5 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_4_a2/ LA - en ID - RLIN_1994_9_5_4_a2 ER -
%0 Journal Article %A DiBenedetto, Emmanuele %A Vespri, Vincenzo %T Continuity for bounded solutions of multiphase Stefan problem %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 1994 %P 297-302 %V 5 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_4_a2/ %G en %F RLIN_1994_9_5_4_a2
DiBenedetto, Emmanuele; Vespri, Vincenzo. Continuity for bounded solutions of multiphase Stefan problem. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 5 (1994) no. 4, pp. 297-302. http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_4_a2/
[1] Non steady flow of water and oil through inhomogeneous porous media. Ann. Sc. Norm. Sup. Pisa, s. IV, vol. XII, 3, 1985, 335-392. | fulltext EuDML | fulltext mini-dml | MR | Zbl
- ,[2] Continuity of the temperature in the two phase Stefan problem. Arch. Rat. Mech. Anal., 81, 1983, 199-220. | DOI | MR | Zbl
- ,[3] Mathematical Models and Finite Elements Methods for Reservoir Simulation. North-Holland 1986. | Zbl
- ,[4] Continuity of weak solutions to certain singular parabolic equations. Ann. Mat. Pura Appl., (4), CXXI, 1982, 131-176. | DOI | MR | Zbl
,[5] The flow of two immiscible fluids through a porous medium: Regularity of the saturation. In: J. L. ERICKSEN - D. KINDERLHERER (eds.), Theory and Applications of Liquid Crystals. IMA, vol. 5, Springer-Verlag, New York 1987, 123-141. | DOI | MR | Zbl
,[6] On the singular equation \( \beta (u)_{t} = \Delta u \). To appear. | DOI | MR | Zbl
- ,[7] Variational Principles and Free Boundary Problems. Wiley-Interscience, New York 1982. | MR | Zbl
,[8] Boundary value problems for systems of equations of two phase porous flow type: statement of the problems, questions of solvability, justification of approximate methods. Mat. Sbornik, 44, 1977, 62-80. | Zbl
- ,[9] Linear and Quasilinear Equations of Parabolic Type. AMS Transl. Math. Mono, 23, Providence RI 1968. | MR | Zbl
- - ,[10] Quelques méthodes de résolutions des problèmes aux limites non linéaires. Dunod Gauthiers-Villars, Paris 1969. | MR | Zbl
,[11] The initial and boundary value problem for a class of degenerate parabolic equations. Comm. Part. Diff. Equ., 8, 1983, 693-734. | Zbl
,[12] Interior and boundary continuity of weak solutions of degenerate parabolic equations. Trans. Amer. Math. Soc., 271 (2), 1982, 733-748. | DOI | MR | Zbl
,