Continuity for bounded solutions of multiphase Stefan problem
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 5 (1994) no. 4, pp. 297-302.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We establish the continuity of bounded local solutions of the equation \( \beta (u)_{t} = \Delta u \). Here \( \beta \) is any coercive maximal monotone graph in \( \mathbb{R} \times \mathbb{R} \), bounded for bounded values of its argument. The multiphase Stefan problem and the Buckley-Leverett model of two immiscible fluids in a porous medium give rise to such singular equations.
In questa Nota si dimostra la continuità delle soluzioni locali limitate dell'equazione \( \beta (u)_{t} = \Delta u \), dove \( \beta \) è un qualsiasi grafo massimale monotono e coercivo in \( \mathbb{R} \times \mathbb{R} \), che si mantiene limitato per valori limitati del suo argomento. A questo contesto appartengono sia il problema di Stefan multifase che il modello di Buckley-Leverett di due fluidi immiscibili in un mezzo poroso.
@article{RLIN_1994_9_5_4_a2,
     author = {DiBenedetto, Emmanuele and Vespri, Vincenzo},
     title = {Continuity for bounded solutions of multiphase {Stefan} problem},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {297--302},
     publisher = {mathdoc},
     volume = {Ser. 9, 5},
     number = {4},
     year = {1994},
     zbl = {0824.35142},
     mrnumber = {837254},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_4_a2/}
}
TY  - JOUR
AU  - DiBenedetto, Emmanuele
AU  - Vespri, Vincenzo
TI  - Continuity for bounded solutions of multiphase Stefan problem
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1994
SP  - 297
EP  - 302
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_4_a2/
LA  - en
ID  - RLIN_1994_9_5_4_a2
ER  - 
%0 Journal Article
%A DiBenedetto, Emmanuele
%A Vespri, Vincenzo
%T Continuity for bounded solutions of multiphase Stefan problem
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1994
%P 297-302
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_4_a2/
%G en
%F RLIN_1994_9_5_4_a2
DiBenedetto, Emmanuele; Vespri, Vincenzo. Continuity for bounded solutions of multiphase Stefan problem. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 5 (1994) no. 4, pp. 297-302. http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_4_a2/

[1] H. W. Alt - E. Dibenedetto, Non steady flow of water and oil through inhomogeneous porous media. Ann. Sc. Norm. Sup. Pisa, s. IV, vol. XII, 3, 1985, 335-392. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[2] L. Caffarelli - L. C. Evans, Continuity of the temperature in the two phase Stefan problem. Arch. Rat. Mech. Anal., 81, 1983, 199-220. | DOI | MR | Zbl

[3] G. Chavent - J. Jaffrè, Mathematical Models and Finite Elements Methods for Reservoir Simulation. North-Holland 1986. | Zbl

[4] E. Dibenedetto, Continuity of weak solutions to certain singular parabolic equations. Ann. Mat. Pura Appl., (4), CXXI, 1982, 131-176. | DOI | MR | Zbl

[5] E. Dibenedetto, The flow of two immiscible fluids through a porous medium: Regularity of the saturation. In: J. L. ERICKSEN - D. KINDERLHERER (eds.), Theory and Applications of Liquid Crystals. IMA, vol. 5, Springer-Verlag, New York 1987, 123-141. | DOI | MR | Zbl

[6] E. Dibenedetto - V. Vespri, On the singular equation \( \beta (u)_{t} = \Delta u \). To appear. | DOI | MR | Zbl

[7] A. Friedman, Variational Principles and Free Boundary Problems. Wiley-Interscience, New York 1982. | MR | Zbl

[8] S. N. Kruzkov - S. M. Sukorjanski, Boundary value problems for systems of equations of two phase porous flow type: statement of the problems, questions of solvability, justification of approximate methods. Mat. Sbornik, 44, 1977, 62-80. | Zbl

[9] O. A. Ladyzhenskaja - V. A. Solonnikov - N. N. Ural'Tzeva, Linear and Quasilinear Equations of Parabolic Type. AMS Transl. Math. Mono, 23, Providence RI 1968. | MR | Zbl

[10] J. L. Lions, Quelques méthodes de résolutions des problèmes aux limites non linéaires. Dunod Gauthiers-Villars, Paris 1969. | MR | Zbl

[11] P. Sachs, The initial and boundary value problem for a class of degenerate parabolic equations. Comm. Part. Diff. Equ., 8, 1983, 693-734. | Zbl

[12] W. P. Ziemer, Interior and boundary continuity of weak solutions of degenerate parabolic equations. Trans. Amer. Math. Soc., 271 (2), 1982, 733-748. | DOI | MR | Zbl