Remarks on positive solutions to a semilinear Neumann problem
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 5 (1994) no. 3, pp. 237-246.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this paper we study the influence of the domain topology on the multiplicity of solutions to a semilinear Neumann problem. In particular, we show that the number of positive solutions is stable under small perturbations of the domain.
In questo lavoro studiamo l'influenza della topologia del dominio sul numero delle soluzioni di un problema di Neumann semilineare. In particolare, mostriamo che il numero delle soluzioni positive è stabile per piccole perturbazioni del dominio.
@article{RLIN_1994_9_5_3_a4,
     author = {Candela, Anna Maria and Lazzo, Monica},
     title = {Remarks on positive solutions to a semilinear {Neumann} problem},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {237--246},
     publisher = {mathdoc},
     volume = {Ser. 9, 5},
     number = {3},
     year = {1994},
     zbl = {0831.35059},
     mrnumber = {1088278},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_3_a4/}
}
TY  - JOUR
AU  - Candela, Anna Maria
AU  - Lazzo, Monica
TI  - Remarks on positive solutions to a semilinear Neumann problem
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1994
SP  - 237
EP  - 246
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_3_a4/
LA  - en
ID  - RLIN_1994_9_5_3_a4
ER  - 
%0 Journal Article
%A Candela, Anna Maria
%A Lazzo, Monica
%T Remarks on positive solutions to a semilinear Neumann problem
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1994
%P 237-246
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_3_a4/
%G en
%F RLIN_1994_9_5_3_a4
Candela, Anna Maria; Lazzo, Monica. Remarks on positive solutions to a semilinear Neumann problem. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 5 (1994) no. 3, pp. 237-246. http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_3_a4/

[1] V. Benci - G. Cerami, The effect of the domain topology on the number of solutions of nonlinear elliptic problems. Arch. Rat. Mech. Anal., 114, 1991, 79-93. | DOI | MR | Zbl

[2] V. Benci - G. Cerami, Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology. To appear. | DOI | MR | Zbl

[3] V. Benci - G. Cerami - D. Passaseo, On the number of the positive solutions of some nonlinear elliptic problems.A tribute in honour of G. Prodi, Scuola Norm. Sup. Pisa, 1991, 93-107. | MR | Zbl

[4] H. Berestycki - T. Gallouet - O. Kavian, Equations de champs scalaires euclidiens nonlinéaires dans le plan. C. R. Acad. Sc. Paris, Série I Math., 297, 1983, 307-310. | MR | Zbl

[5] H. Berestycki - P. L. Lions, Nonlinear scalar field equations, I-Existence of a ground state. Arch. Rat. Mech. Anal., 82, 1983, 313-375. | DOI | MR | Zbl

[6] S. Coleman - V. Glaser - A. Martin, Action minima among solutions to a class of Euclidean scalar field equations. Comm. Math. Phys., 58, 1978, 211-221. | fulltext mini-dml | MR

[7] A. Gierer - H. Meinhardt, A theory of biological pattern formation. Kybernetik (Berline), 12, 1972.

[8] M. K. Kwong, Uniqueness of positive solutions of \( \Delta u - u + u^{p} = 0 \) in \( \mathbb{R}^{n} \). Arch. Rat. Mech. Anal., 105, 1989, 243-266. | DOI | MR | Zbl

[9] M. Lazzo, Morse theory and multiple positive solutions to a Neumann problem. Ann. Mat. Pura e Appl., to appear. | DOI | MR | Zbl

[10] C. S. Lin - W. M. Ni - I. Takagi, Large amplitude stationary solutions to a chemotaxis system. Jour. Diff. Eq., 72, 1988, 1-27. | DOI | MR | Zbl

[11] G. Mancini - R. Musina, The role of the boundary in some semilinear Neumann problems. Rend. Sem. Mat. Padova, 88, 1992, 127-138. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[12] W. M. Ni - I. Takagi, On the shape of least-energy solutions to a semilinear Neumann problem. Comm. Pure Appl. Math., 45, 1991, 819-851. | DOI | MR | Zbl

[13] Z. Q. Wang, On the existence of multiple, single-peaked solutions for a semilinear Neumann problem. Arch. Rat. Mech. Anal., 120, 1992, 375-399. | DOI | MR | Zbl