Two-weight Sobolev-Poincaré inequalities and Harnack inequality for a class of degenerate elliptic operators
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 5 (1994) no. 2, pp. 167-175.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this Note we prove a two-weight Sobolev-Poincaré inequality for the function spaces associated with a Grushin type operator. Conditions on the weights are formulated in terms of a strong \( A_{\infty} \)» weight with respect to the metric associated with the operator. Roughly speaking, the strong \( A_{\infty} \)» condition provides relationships between line and solid integrals of the weight. Then, this result is applied in order to prove Harnack's inequality for positive weak solutions of some degenerate elliptic equations.
In questa Nota proviamo una disuguaglianza di Sobolev-Poincaré con due pesi per gli spazi funzionali associati ad un operatore tipo Grushin. Le condizioni sui pesi sono formulate in termini di un dato peso fortemente \( A_{\infty} \)» rispetto a una metrica naturale per l'operatore, dove la condizione \( A_{\infty} \)»-forte richiede opportune relazioni tra gli integrali di linea e gli integrali solidi del peso. Successivamente, questo risultato è applicato per provare la disuguaglianza di Harnack per le soluzioni deboli positive di certe equazioni ellittiche degeneri.
@article{RLIN_1994_9_5_2_a6,
     author = {Franchi, Bruno and Guti\'errez, Cristian E. and Wheeden, Richard L.},
     title = {Two-weight {Sobolev-Poincar\'e} inequalities and {Harnack} inequality for a class of degenerate elliptic operators},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {167--175},
     publisher = {mathdoc},
     volume = {Ser. 9, 5},
     number = {2},
     year = {1994},
     zbl = {0811.46023},
     mrnumber = {982072},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_2_a6/}
}
TY  - JOUR
AU  - Franchi, Bruno
AU  - Gutiérrez, Cristian E.
AU  - Wheeden, Richard L.
TI  - Two-weight Sobolev-Poincaré inequalities and Harnack inequality for a class of degenerate elliptic operators
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1994
SP  - 167
EP  - 175
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_2_a6/
LA  - en
ID  - RLIN_1994_9_5_2_a6
ER  - 
%0 Journal Article
%A Franchi, Bruno
%A Gutiérrez, Cristian E.
%A Wheeden, Richard L.
%T Two-weight Sobolev-Poincaré inequalities and Harnack inequality for a class of degenerate elliptic operators
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1994
%P 167-175
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_2_a6/
%G en
%F RLIN_1994_9_5_2_a6
Franchi, Bruno; Gutiérrez, Cristian E.; Wheeden, Richard L. Two-weight Sobolev-Poincaré inequalities and Harnack inequality for a class of degenerate elliptic operators. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 5 (1994) no. 2, pp. 167-175. http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_2_a6/

[1] B. Bojarske, Remarks on Sobolev imbedding inequalities. Complex Analysis, Lecture Notes in Mathematics 1351, Springer, 1989, 52-68. | DOI | MR | Zbl

[2] A. P. Calderon, Inequalities for the maximal function relative to a metric. Studia Math., 57, 1976, 297-306. | fulltext mini-dml | MR | Zbl

[3] L. Capogna - D. Danielli - N. Garofalo, Embedding theorems and the Harnack inequality for solutions of nonlinear subelliptic equations. C.R. Acad. Sci. Paris, 316, 1993, 809-814. | MR | Zbl

[4] S. Chanillo - R. L. Wheeden, Weighted Poincaré and Sobolev inequalities and estimates for the Peano maximal function. Amer. J. Math., 107, 1985, 1191-1226. | DOI | MR | Zbl

[5] S. Chanillo - R. L. Wheeden, Harnack's inequality and mean-value inequalities for solutions of degenerate elliptic equations. Comm. Partial Differential Equations, 11, 1986, 1111-1134. | DOI | MR | Zbl

[6] S. Chua, Weighted Sobolev inequality on domains satisfying chain conditions. Proc. Amer. Math. Soc., to appear. | Zbl

[7] G. David - S. Semmes, Strong \( A_{\infty} \) weights, Sobolev inequalities and quasiconformal mappings In: C. SADOSKY (éd.), Analysis and Partial Differential Equations. Marcel Dekker, 1990, 101-111. | MR | Zbl

[8] E. Fabes - C. Kenig - R. Serapioni, The local regularity of solutions of degenerate elliptic equations. Comm. Partial Differential Equations, 7, 1982, 77-116. | DOI | MR | Zbl

[9] J. C. Fernandes, Mean value and Harnack inequalities for a certain class of degenerate parabolic equations. Revista Matematica Iberoamericana, 7, 1991, 247-286. | fulltext EuDML | DOI | MR | Zbl

[10] C. Fefferman - D. H. Phong, Subelliptic eigenvalue problems. In: W. BECKNER et al (eds.), Conference on Harmonic Analysis (Chicago 1980). Wadsworth 1981, 590-606. | MR | Zbl

[11] B. Franchi, Weighted Sobolev-Poincaré inequalities and pointwise estimates for a class of degenerate elliptic equations. Trans. Amer. Math. Soc., 327, 1991, 125-158. | DOI | MR | Zbl

[12] B. Franchi, Inégalités de Sobolev pour des champs de vecteurs lipschitziens. C.R. Acad. Sci. Paris, 311, 1990, 329-332. | MR | Zbl

[13] B. Franchi - E. Lanconelli, Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients. Ann. Scuola Norm. Sup. Pisa, 10, (4), 1983, 523-541. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[14] B. Franchi - R. Serapioni, Pointwise estimates for a class of strongly degenerate elliptic operators: a geometrical approach. Ann. Scuola Norm. Sup. Pisa, 14, (4), 1987, 527-568. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[15] B. Franchi - C. Gutierrez - R. L. Wheeden, Weighted Sobolev-Poincaré inequalities for Grushin type operators. Comm. Partial Differential Equations, to appear. | DOI | MR | Zbl

[16] B. Franchi - S. Gallot - R. L. Wheeden, Sobolev and isoperimetric inequalities for degenerate metrics. Math. Ann., to appear. | fulltext EuDML | DOI | MR | Zbl

[17] B. Franchi - S. Gallot - R. L. Wheeden, Inégalités isopérimetriques pour des métriques dégénérées. C.R. Acad. Sci. Paris, Ser. A, 317, 1993, 651-654. | MR | Zbl

[18] F. W. Gehring, The \( L^{p} \)-integrability of the partial derivatives of a quasi conformai mapping. Acta Math., 130, 1973, 265-277. | MR | Zbl

[19] C. Gutierrez - R. L. Wheeden, Mean-value and Harnack inequalities for degenerate parabolic equations. Colloq. Math., 60/61, 1990, 157-194. | MR | Zbl

[20] T. Iwaniek - C. A. Nolder, Hardy-Littlewood inequality for quasiregular mappings in certain domains in \( \mathbb{R}^{n} \). Ann. Acad. Sci. Fenn., Series A I Math. 10, 1985, 267-282. | MR | Zbl

[21] D. Jerison, The Poincaré inequality for vector fields satisfying Hörmander condition. Duke Math. J., 53, 1986, 503-523. | fulltext mini-dml | DOI | MR | Zbl

[22] G. Lu, The sharp Poincaré inequality for free vector fields: an endpoint result. Revista Matématica Iberoamericana, to appear. | fulltext EuDML | DOI | MR | Zbl

[23] A. Nagel - E. M. Stein - S. Wainger, Balls and metrics defined by vector fields I: basic properties. Acta Math., 155, 1985, 103-147. | DOI | MR | Zbl

[24] O. Salinas, Harnack inequality and Green function for a certain class of degenerate elliptic differential operators. Revista Matematica Iberoamericana, 7, 1991, 313-349. | fulltext EuDML | DOI | MR | Zbl

[25] E. Sawyer - R. L. Wheeden, Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces. Amer. J. Math., 114, 1992, 813-874. | DOI | MR | Zbl