Finite groups with eight non-linear irreducible characters
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 5 (1994) no. 2, pp. 141-148.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

This Note contains the complete list of finite groups, having exactly eight non-linear irreducible characters. In section 4 we consider in full details some typical cases.
La Nota contiene la lista completa dei gruppi finiti con esattamente otto caratteri irriducibili non lineari. Sono riportate le dimostrazioni di alcuni casi tipici.
@article{RLIN_1994_9_5_2_a3,
     author = {Berkovich, Yakov},
     title = {Finite groups with eight non-linear irreducible characters},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {141--148},
     publisher = {mathdoc},
     volume = {Ser. 9, 5},
     number = {2},
     year = {1994},
     zbl = {0809.20004},
     mrnumber = {854622},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_2_a3/}
}
TY  - JOUR
AU  - Berkovich, Yakov
TI  - Finite groups with eight non-linear irreducible characters
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1994
SP  - 141
EP  - 148
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_2_a3/
LA  - en
ID  - RLIN_1994_9_5_2_a3
ER  - 
%0 Journal Article
%A Berkovich, Yakov
%T Finite groups with eight non-linear irreducible characters
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1994
%P 141-148
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_2_a3/
%G en
%F RLIN_1994_9_5_2_a3
Berkovich, Yakov. Finite groups with eight non-linear irreducible characters. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 5 (1994) no. 2, pp. 141-148. http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_2_a3/

[1] Ya. G. Berkovich, Finite groups with a given number of conjugacy classes. Publ. Math. Debrecen, t. 33, fasc. 1-2, 1986, 107-123 (in Russian). | MR | Zbl

[2] Ya. G. Berkovich, Finite groups with the small number of irreducible non-linear characters. Izvestija Severo-Kavkazskogo nauchnogo Tzentra vyschei schkoly, Estestvennye nauki, 1 (57), 1987, 8-13 (in Russian). | MR | Zbl

[3] Ya. G. Berkovich, Finite groups with few non-linear irreducible characters. In: Questions of group theory and homological algebra. Jaroslavl, 1990, 97-107 (in Russian). | MR | Zbl

[4] Ya. G. Berkovich - E. M. Zhmud, Characters of finite groups. To appear. | Zbl

[5] C. Hansen - J. M. Nielsen, Finite groups having exactly two non-linear irreducible characters. Prep. Ser. Aarhus Univ., 33, 1981-1982, 1-10. | Zbl

[6] I. M. Isaacs - D. S. Passman, Groups with relatively few non-linear irreducible characters. Can. J. Math., vol. 20, 1968, 1451-1458. | MR | Zbl

[7] I. M. Isaacs, Character theory of finite groups. Acad. Press, 1976. | MR | Zbl

[8] G. Seitz, Finite groups having only one irreducible representation of degree greater than one. Proc. Amer. Math. Soc., vol. 19, 1968, 459-461. | MR | Zbl