Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_1994_9_5_2_a3, author = {Berkovich, Yakov}, title = {Finite groups with eight non-linear irreducible characters}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {141--148}, publisher = {mathdoc}, volume = {Ser. 9, 5}, number = {2}, year = {1994}, zbl = {0809.20004}, mrnumber = {854622}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_2_a3/} }
TY - JOUR AU - Berkovich, Yakov TI - Finite groups with eight non-linear irreducible characters JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 1994 SP - 141 EP - 148 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_2_a3/ LA - en ID - RLIN_1994_9_5_2_a3 ER -
%0 Journal Article %A Berkovich, Yakov %T Finite groups with eight non-linear irreducible characters %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 1994 %P 141-148 %V 5 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_2_a3/ %G en %F RLIN_1994_9_5_2_a3
Berkovich, Yakov. Finite groups with eight non-linear irreducible characters. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 5 (1994) no. 2, pp. 141-148. http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_2_a3/
[1] Finite groups with a given number of conjugacy classes. Publ. Math. Debrecen, t. 33, fasc. 1-2, 1986, 107-123 (in Russian). | MR | Zbl
,[2] Finite groups with the small number of irreducible non-linear characters. Izvestija Severo-Kavkazskogo nauchnogo Tzentra vyschei schkoly, Estestvennye nauki, 1 (57), 1987, 8-13 (in Russian). | MR | Zbl
,[3] Finite groups with few non-linear irreducible characters. In: Questions of group theory and homological algebra. Jaroslavl, 1990, 97-107 (in Russian). | MR | Zbl
,[4] Characters of finite groups. To appear. | Zbl
- ,[5] Finite groups having exactly two non-linear irreducible characters. Prep. Ser. Aarhus Univ., 33, 1981-1982, 1-10. | Zbl
- ,[6] Groups with relatively few non-linear irreducible characters. Can. J. Math., vol. 20, 1968, 1451-1458. | MR | Zbl
- ,[7] Character theory of finite groups. Acad. Press, 1976. | MR | Zbl
,[8] Finite groups having only one irreducible representation of degree greater than one. Proc. Amer. Math. Soc., vol. 19, 1968, 459-461. | MR | Zbl
,