Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_1994_9_5_1_a5, author = {W{\l}odarczyk, Kazimierz}, title = {Angular limits and derivatives for holomorphic maps of infinite dimensional bounded homogeneous domains}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {43--53}, publisher = {mathdoc}, volume = {Ser. 9, 5}, number = {1}, year = {1994}, zbl = {0802.46060}, mrnumber = {357743}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_1_a5/} }
TY - JOUR AU - Włodarczyk, Kazimierz TI - Angular limits and derivatives for holomorphic maps of infinite dimensional bounded homogeneous domains JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 1994 SP - 43 EP - 53 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_1_a5/ LA - en ID - RLIN_1994_9_5_1_a5 ER -
%0 Journal Article %A Włodarczyk, Kazimierz %T Angular limits and derivatives for holomorphic maps of infinite dimensional bounded homogeneous domains %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 1994 %P 43-53 %V 5 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_1_a5/ %G en %F RLIN_1994_9_5_1_a5
Włodarczyk, Kazimierz. Angular limits and derivatives for holomorphic maps of infinite dimensional bounded homogeneous domains. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 5 (1994) no. 1, pp. 43-53. http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_1_a5/
[1] Conformal invariants: topics in geometric function theory. McGraw-Hill, New York 1973. | MR | Zbl
,[2] Pick-Julia theorems for operators. Math. Z., 168, 1979, 23-34. | fulltext EuDML | DOI | MR | Zbl
- ,[3] Angular limits of holomorphic and meromorphic functions. J. London Math. Soc., (2), 42, 1990, 279-291. | DOI | MR | Zbl
- - ,[4] Angular limits and infinite asymptotic values of analytic functions of slow growth. Ill. J. Math., 34, 1990, 845-858. | fulltext mini-dml | MR | Zbl
,[5] Conformal representations. Cambridge Tracts in Mathematics and Mathematical Physics, Cambridge 1952. | Zbl
,[6] Über die Winkelderivierten von beschrankten analytischen Functionen. Sitz. Ber. Preuss. Akad., Phys.-Math., IV, 1929, 1-18. | Jbk 55.0209.02
,[7] Theory of functions. Vol. 2. Chelsea Publishing Company, New York 1960. | Zbl
,[8] Sur les domaines bornés homogènees de l'espace de n variables complexes. Abh. Math. Sem. Univ. Hamburg, 11, 1935, 116-162. | Zbl
,[9] The angular derivative of an operator-valued analytic function. Pacific J. Math., 121, 1986, 67-72. | fulltext mini-dml | MR | Zbl
,[10] Angular limits of holomorphic functions which satisfy an integrability condition. Monatsh. Math., 114, 1992, 97-106. | fulltext EuDML | DOI | MR | Zbl
,[11] Non-tangential limits for analytic functions of slow growth in a disc. J. London Math. Soc., (2), 46, 1992, 140-148. | DOI | MR | Zbl
,[12] Functions with positive real part in a half plane. Duke Math. J., 29, 1962, 333-339. | fulltext mini-dml | MR | Zbl
,[13] Bounded symmetric homogeneous domains in infinite dimensional spaces. Lecture Notes in Mathematics, 364, Springer-Verlag, Berlin-Heidelberg-New York 1974, 13-40. | MR | Zbl
,[14] Angular derivatives and compact composition operators on the Hardy and Bergman spaces. Canadian J. Math., 38, 1986, 878-906. | DOI | MR | Zbl
- ,[15] Topology on spaces of holomorphic mappings. Springer-Verlag, Berlin-Heidelberg-New York 1969. | MR | Zbl
,[16] Analytic functions. Springer-Verlag, Berlin-Heidelberg-New York 1970. | MR | Zbl
,[17] Univalent functions. Vandenhoeck and Ruprecht, Göttingen 1975. | MR | Zbl
,[18] Function theory in the unit ball of \( C^{n} \). Springer-Verlag, New York-Heidelberg-Berlin 1980. | MR | Zbl
,[19] Angular derivatives via Hilbert space. Complex Variables Theory Appl., 10, 1988, 1-10. | MR | Zbl
,[20] Hyperbolic geometry in bounded symmetric homogeneous domains of \( J^{*} \)-algebras. Atti Sem. Mat. Fis. Univ. Modena, 39, 1991, 201-211. | MR | Zbl
,[21] Julia's lemma and Wolffs theorem for \( J^{*} \)-algebras. Proc. Amer. Math. Soc., 99, 1987, 472-476. | DOI | MR | Zbl
,[22] Pick-Julia theorems for holomorphic maps in \( J^{*} \)-algebras and Hilbert spaces. J. Math. Anal. Appl., 120, 1986, 567-571. | DOI | MR | Zbl
,[23] Some properties of analytic maps of operators in \( J^{*} \)-algebras. Monatsh. Math., 96, 1983, 325-330. | fulltext EuDML | DOI | MR | Zbl
,[24] Studies of iterations of holomorphic maps in \( J^{*} \)-algebras and complex Banach spaces. Quart. J. Math. Oxford, 37, 1986, 245-256. | DOI | MR | Zbl
,[25] The angular derivative of Fréchet-holomorphic maps in \( J^{*} \)-algebras and complex Hilbert spaces. Proc. Kon. Nederl. Akad. Wetensch., A91, 1988, 455-468; Indag. Math., 50, 1988, 455-468. | MR | Zbl
,[26] The Julia-Carathéodory theorem for distance-decreasing maps on infinite dimensional hyperbolic spaces. Rend. Mat. Acc. Lincei, s. 9, v. 4, 1993, 171-179. | fulltext bdim | fulltext mini-dml | MR | Zbl
,