Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_1993_9_4_4_a3, author = {Montecchiari, Piero}, title = {Multiplicity of homoclinic orbits for a class of asymptotically periodic {Hamiltonian} systems}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {265--271}, publisher = {mathdoc}, volume = {Ser. 9, 4}, number = {4}, year = {1993}, zbl = {0802.34052}, mrnumber = {1206338}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_1993_9_4_4_a3/} }
TY - JOUR AU - Montecchiari, Piero TI - Multiplicity of homoclinic orbits for a class of asymptotically periodic Hamiltonian systems JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 1993 SP - 265 EP - 271 VL - 4 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_1993_9_4_4_a3/ LA - en ID - RLIN_1993_9_4_4_a3 ER -
%0 Journal Article %A Montecchiari, Piero %T Multiplicity of homoclinic orbits for a class of asymptotically periodic Hamiltonian systems %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 1993 %P 265-271 %V 4 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_1993_9_4_4_a3/ %G en %F RLIN_1993_9_4_4_a3
Montecchiari, Piero. Multiplicity of homoclinic orbits for a class of asymptotically periodic Hamiltonian systems. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 4 (1993) no. 4, pp. 265-271. http://geodesic.mathdoc.fr/item/RLIN_1993_9_4_4_a3/
[1] On «Multibump» Bound States for Certain Semilinear Elliptic Equations. Research Report No. 92-NA-012. Carnegie Mellon University, 1992. | DOI | MR | Zbl
- ,[2] Critical points and nonlinear variational problems. Bul. Soc. Math. France, 120, 1992. | fulltext EuDML | fulltext mini-dml | MR | Zbl
,[3] A Variational approach to homoclinic orbits in Hamiltonian systems. Math. Ann., 288, 1990, 133-160. | fulltext EuDML | DOI | MR | Zbl
- - ,[4] Homoclinic orbits for second order hamiltonian systems possessing superquadratic potentials. J. Amer. Math. Soc., 4, 1991, 693-727. | DOI | MR | Zbl
- ,[5] First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems. Math. Ann., 288, 1990, 483-503. | fulltext EuDML | DOI | MR | Zbl
- ,[6] The concentration-compactness principle in the calculus of variations. Rev. Math. Iberoam., 1, 1985, 145-201. | fulltext EuDML | fulltext mini-dml | fulltext mini-dml | DOI | MR | Zbl
,[7] Existence and multiplicity of homoclinic orbits for a class of asymptotically periodic second order Hamiltonian systems. Preprint S.I.S.S.A., 1993. | DOI | MR | Zbl
,[8] Homoclinic orbits for a class of Hamiltonian systems. Proc. Roy. Soc. Edinburgh, 1144, 1990, 33-38. | DOI | MR | Zbl
,[9] Existence of infinitely many homoclinic orbits in Hamiltonian systems. Math. Z., 209, 1992, 27-42. | fulltext EuDML | DOI | MR | Zbl
,[10] Looking for the Bernoulli shift. Preprint CEREMADE, 1992. | fulltext mini-dml | MR | Zbl
,