Multiplicity of homoclinic orbits for a class of asymptotically periodic Hamiltonian systems
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 4 (1993) no. 4, pp. 265-271.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We prove the existence of infinitely many geometrically distinct homoclinic orbits for a class of asymptotically periodic second order Hamiltonian systems.
Si dimostra l'esistenza di infinite orbite omocline geometricamente distinte per una classe di sistemi Hamiltoniani del secondo ordine asintoticamente periodici.
@article{RLIN_1993_9_4_4_a3,
     author = {Montecchiari, Piero},
     title = {Multiplicity of homoclinic orbits for a class of asymptotically periodic {Hamiltonian} systems},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {265--271},
     publisher = {mathdoc},
     volume = {Ser. 9, 4},
     number = {4},
     year = {1993},
     zbl = {0802.34052},
     mrnumber = {1206338},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1993_9_4_4_a3/}
}
TY  - JOUR
AU  - Montecchiari, Piero
TI  - Multiplicity of homoclinic orbits for a class of asymptotically periodic Hamiltonian systems
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1993
SP  - 265
EP  - 271
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1993_9_4_4_a3/
LA  - en
ID  - RLIN_1993_9_4_4_a3
ER  - 
%0 Journal Article
%A Montecchiari, Piero
%T Multiplicity of homoclinic orbits for a class of asymptotically periodic Hamiltonian systems
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1993
%P 265-271
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1993_9_4_4_a3/
%G en
%F RLIN_1993_9_4_4_a3
Montecchiari, Piero. Multiplicity of homoclinic orbits for a class of asymptotically periodic Hamiltonian systems. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 4 (1993) no. 4, pp. 265-271. http://geodesic.mathdoc.fr/item/RLIN_1993_9_4_4_a3/

[1] S. Alama - Y. Y. Li, On «Multibump» Bound States for Certain Semilinear Elliptic Equations. Research Report No. 92-NA-012. Carnegie Mellon University, 1992. | DOI | MR | Zbl

[2] A. Ambrosetti, Critical points and nonlinear variational problems. Bul. Soc. Math. France, 120, 1992. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[3] V. Coti Zelati - I. Ekeland - E. Séré, A Variational approach to homoclinic orbits in Hamiltonian systems. Math. Ann., 288, 1990, 133-160. | fulltext EuDML | DOI | MR | Zbl

[4] V. Coti Zelati - P. H. Rabinowitz, Homoclinic orbits for second order hamiltonian systems possessing superquadratic potentials. J. Amer. Math. Soc., 4, 1991, 693-727. | DOI | MR | Zbl

[5] H. Hofer - K. Wisocki, First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems. Math. Ann., 288, 1990, 483-503. | fulltext EuDML | DOI | MR | Zbl

[6] P.L. Lions, The concentration-compactness principle in the calculus of variations. Rev. Math. Iberoam., 1, 1985, 145-201. | fulltext EuDML | fulltext mini-dml | fulltext mini-dml | DOI | MR | Zbl

[7] P. Montecchiari, Existence and multiplicity of homoclinic orbits for a class of asymptotically periodic second order Hamiltonian systems. Preprint S.I.S.S.A., 1993. | DOI | MR | Zbl

[8] P. H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems. Proc. Roy. Soc. Edinburgh, 1144, 1990, 33-38. | DOI | MR | Zbl

[9] E. Séré, Existence of infinitely many homoclinic orbits in Hamiltonian systems. Math. Z., 209, 1992, 27-42. | fulltext EuDML | DOI | MR | Zbl

[10] E. Séré, Looking for the Bernoulli shift. Preprint CEREMADE, 1992. | fulltext mini-dml | MR | Zbl