Some perturbation results for non-linear problems
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 4 (1993) no. 4, pp. 243-250.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We discuss the existence of closed geodesic on a Riemannian manifold and the existence of periodic solution of second order Hamiltonian systems.
Viene discussa l'esistenza di geodetiche chiuse su una varietà Riemanniana compatta e l'esistenza di moti periodici per sistemi Hamiltoniani del second'ordine.
@article{RLIN_1993_9_4_4_a1,
     author = {Carminati, Carlo},
     title = {Some perturbation results for non-linear problems},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {243--250},
     publisher = {mathdoc},
     volume = {Ser. 9, 4},
     number = {4},
     year = {1993},
     zbl = {0799.58063},
     mrnumber = {113234},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1993_9_4_4_a1/}
}
TY  - JOUR
AU  - Carminati, Carlo
TI  - Some perturbation results for non-linear problems
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1993
SP  - 243
EP  - 250
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1993_9_4_4_a1/
LA  - en
ID  - RLIN_1993_9_4_4_a1
ER  - 
%0 Journal Article
%A Carminati, Carlo
%T Some perturbation results for non-linear problems
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1993
%P 243-250
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1993_9_4_4_a1/
%G en
%F RLIN_1993_9_4_4_a1
Carminati, Carlo. Some perturbation results for non-linear problems. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 4 (1993) no. 4, pp. 243-250. http://geodesic.mathdoc.fr/item/RLIN_1993_9_4_4_a1/

[1] S. I. Alber, On periodicity problems in the calculus of variations in the large. Amer. Math. Soc. Transl., (2), 14, 1960. | MR | Zbl

[2] A. Ambrosetti, Critical points and non-linear variational problems. Supplément Bull. Soc. Math, de France, n. 49, 120, 1992. | fulltext EuDML | fulltext mini-dml | Zbl

[3] A. Ambrosetti - V. Benci - Y. Long, A note on the existence of multiple brake orbits. J.N.A.-T.M.A., to appear. | Zbl

[4] A. Ambrosetti - V. Coti Zelati - I. Ekeland, Symmetry breaking in Hamiltonian systems. J. Diff. Equat., 67, 1987, 165-184. | DOI | MR | Zbl

[5] V. Benci - F. Giannoni, A New Proof of the Existence of a Brake Orbit. Advanced Topics in the Theory of Dynamical Systems, Academic Press, New York 1990. | MR | Zbl

[6] I. Ekeland - J. M. Lasry, On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface. Ann. of Math., 112, 1980, 283-319. | DOI | MR | Zbl

[7] W. Klingenberg, Lectures on Closed Geodesics. Springer, 1978. | MR | Zbl

[8] J. T. Schwartz, Nonlinear functional Analysis. Gordon & Breach, New York 1969. | MR | Zbl

[9] M. Struwe, Variational Methods. Springer, 1990. | MR | Zbl

[10] A. Szulkin, An index theory and existence of multiple brake orbits for star-shaped hamiltonian systems. Math. Ann., 283, 1989, 241-255. | fulltext EuDML | DOI | MR | Zbl