On linearly normal strange curves
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 4 (1993) no. 3, pp. 219-222.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Here we prove a numerical bound implying that, except for smooth plane conics in characteristic 2, no complete linear system maps birationally a smooth curve into a projective space with a strange curve as image.
Si dimostra qui una diseguaglianza numerica che ha come applicazione il fatto che le coniche piane in caratteristica 2 corrispondono agli unici sistemi lineari completi su una curva liscia \( X \) che determinano un morfismo birazionale \( h \) da \( X \) in uno spazio proiettivo con \( h(X) \) curva «strana».
@article{RLIN_1993_9_4_3_a7,
     author = {Ballico, Edoardo},
     title = {On linearly normal strange curves},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {219--222},
     publisher = {mathdoc},
     volume = {Ser. 9, 4},
     number = {3},
     year = {1993},
     zbl = {0818.14012},
     mrnumber = {2686342},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1993_9_4_3_a7/}
}
TY  - JOUR
AU  - Ballico, Edoardo
TI  - On linearly normal strange curves
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1993
SP  - 219
EP  - 222
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1993_9_4_3_a7/
LA  - en
ID  - RLIN_1993_9_4_3_a7
ER  - 
%0 Journal Article
%A Ballico, Edoardo
%T On linearly normal strange curves
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1993
%P 219-222
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1993_9_4_3_a7/
%G en
%F RLIN_1993_9_4_3_a7
Ballico, Edoardo. On linearly normal strange curves. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 4 (1993) no. 3, pp. 219-222. http://geodesic.mathdoc.fr/item/RLIN_1993_9_4_3_a7/

[1] D. Abramovich, Subvarieties of Abelian varieties and of Jacobians of curves. Ph. D. thesis, Harvard, April 1991. | MR

[2] D. Abramovich - J. Harris, Abelian varieties and curves in \( W_{d}(C) \). Compositio Math., vol. 78, 1991, 227-238. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[3] E. Arbarello - M. Cornalba - P. Griffiths - J. Harris, Geometry of Algebraic Curves. Vol. I. Springer-Verlag, 1985. | MR | Zbl

[4] E. Ballico, On singular curves in the case of positive characteristic. Math. Nachr., vol. 141, 1989, 267-273. | DOI | MR | Zbl

[5] E. Ballico - A. Hefez, On the Galois group of a genetically etale morphism. Commun. Algebra, vol. 14, 1986, 899-909. | DOI | MR | Zbl

[6] D. Bayer - A. Hefez, Strange plane curves. Commun. Algebra, vol. 19, 1991, 3041-3059. | DOI | MR | Zbl

[7] C. Ciliberto, Hilbert functions of finite sets of points and genus of a curve in a projective space. In: Space Curves. Lecture notes in Mathematics, 1266, Springer-Verlag, 1987, 24-83. | DOI | MR | Zbl

[8] M. Coppens, A remark on curves covered by coverings. Proc. Amer. Math. Soc., to appear. | DOI | MR | Zbl

[9] L. Ein, Stable vector bundles on projective spaces in char \( p > 0 \). Math. Ann., vol. 254, 1980, 53-72. | fulltext EuDML | DOI | MR | Zbl

[10] D. Eisenbud - J. Harms, The dimension of the Chow variety of curves. Preprint. | Zbl

[11] J. Harris, Curve in a projective space. Les presses de L'Université de Montreal, 1982 (chapter III being joint work with D. Eisenbud). | MR | Zbl

[12] D. Laksov, Indecomposability of restricted tangent bundles. In: Tableaux de Young et foncteurs de Schur en algebre et géométrie. Astérisque, 87-88, 1981, 207-219. | MR | Zbl

[13] E. Lluis, Variedades algebraicas con ciertas conditiones en sur tangentes. Bol. Soc. Mat. Mexicana, s. 2, vol. 7, 1962, 47-56. | Zbl

[14] J. Rathmann, The uniform position principle for curves in characteristic \( p \). Math. Ann., vol. 276, 1987, 565-579. | fulltext EuDML | DOI | MR | Zbl