The Julia-Carathéodory theorem for distance-decreasing maps on infinite dimensional hyperbolic spaces
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 4 (1993) no. 3, pp. 171-179.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

A classical Julia-Carathéodory theorem concerning radial limits of holomorphic maps in one dimension is extended to hyperbolic contractions of bounded symmetric domains in J*-algebras.
Un classico risultato di Julia e Carathéodory, relativo a limiti radiali di funzioni olomorfe di una variabile, viene esteso alle contrazioni iperboliche in domini limitati simmetrici in algebra J*.
@article{RLIN_1993_9_4_3_a1,
     author = {W{\l}odarczyk, Kazimierz},
     title = {The {Julia-Carath\'eodory} theorem for distance-decreasing maps on infinite dimensional hyperbolic spaces},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {171--179},
     publisher = {mathdoc},
     volume = {Ser. 9, 4},
     number = {3},
     year = {1993},
     zbl = {0817.46048},
     mrnumber = {1129300},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1993_9_4_3_a1/}
}
TY  - JOUR
AU  - Włodarczyk, Kazimierz
TI  - The Julia-Carathéodory theorem for distance-decreasing maps on infinite dimensional hyperbolic spaces
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1993
SP  - 171
EP  - 179
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1993_9_4_3_a1/
LA  - en
ID  - RLIN_1993_9_4_3_a1
ER  - 
%0 Journal Article
%A Włodarczyk, Kazimierz
%T The Julia-Carathéodory theorem for distance-decreasing maps on infinite dimensional hyperbolic spaces
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1993
%P 171-179
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1993_9_4_3_a1/
%G en
%F RLIN_1993_9_4_3_a1
Włodarczyk, Kazimierz. The Julia-Carathéodory theorem for distance-decreasing maps on infinite dimensional hyperbolic spaces. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 4 (1993) no. 3, pp. 171-179. http://geodesic.mathdoc.fr/item/RLIN_1993_9_4_3_a1/

[1] M. Abate, Iteration theory, compactly divergent sequences and commuting holomorphic maps. Ann. Scuola Norm. Sup. Pisa, 18, 1991, 167-191. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[2] T. Ando - K. Fan, Pick-Julia theorems for operators. Math. Z., 168, 1979, 23-34. | fulltext EuDML | DOI | MR | Zbl

[3] A. F. Beardon, Iteration of contractions and analytic maps. J. London Math. Soc, 41, 1990, 141-150. | DOI | MR | Zbl

[4] C. Caratheodory, Conformal Representations. Cambridge Tracts in Mathematics and Mathematical Physics, Cambridge 1952. | MR | Zbl

[5] E. Cartan, Sur les domaines bornés homogènes de l'espace de \( n \) variables complexes. Abh. Math. Sem. Univ. Hamburg, 11, 1935, 116-162. | Zbl

[6] G.-N. Chen, Iteration for holomorphic maps of the open unit ball and the generalized upper half plane of \( C^{n} \). J. Math. Anal. Appl., 98, 1984, 305-313. | DOI | MR | Zbl

[7] S. Dineen, The Schwarz Lemma. Oxford Mathematical Monographs, Clarendon Press, Oxford 1989. | MR | Zbl

[8] S. Dineen - R. Timoney - J. P. Vigue, Pseudodistances invariantes les domaines d'un espace localement convexe. Ann. Scuola Norm. Sup. Pisa, (4), 12, 1985, 515-529. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[9] K. Fan, Analytic functions of an operator contraction. Math. Z., 160, 1978, 275-290. | fulltext EuDML | MR | Zbl

[10] K. Fan, Julia's lemma for operators. Math. Ann., 239, 1979, 241-245. | fulltext EuDML | DOI | MR | Zbl

[11] K. Fan, Iteration of analytic functions of operators. Math. Z., 179, 1982, 293-298. | fulltext EuDML | DOI | MR | Zbl

[12] K. Fan, The angular derivative of an operator-valued analytic function. Pacific J. Math., 121, 1986, 67-72. | fulltext mini-dml | MR | Zbl

[13] T. Franzoni - E. Vesentini, Holomorphic Maps and Invariant Distance. North Holland, Amsterdam 1980. | MR | Zbl

[14] L. A. Harris, Bounded Symmetric Homogeneous Domains in Infinite Dimensional Spaces. Lecture Notes in Mathematics, No. 364, Springer-Verlag, Berlin-Heidelberg-New York 1974, 13-40. | MR | Zbl

[15] L. A. Harris, Schwarz-Pick systems of pseudometrics for domains in normed linear spaces. In: J. A. BARROSO (ed.), Advances in Holomorphy. North Holland, Amsterdam 1979, 345-406. | MR | Zbl

[16] L. A. Harris, Linear fractional transformations of circular domains in operator spaces. Indiana Univ. Math. J., 41, 1992, 125-147, | DOI | MR | Zbl

[17] M. Hervé, Analyticity in Infinite Dimensional Spaces. Walter de Gruyter, Berlin-New York 1989. | DOI | MR | Zbl

[18] Y. Kubota, Iteration of holomorphic maps of the unit ball into itself. Proc. Amer. Math. Soc., 88, 1983, 476-480. | DOI | MR | Zbl

[19] B. D. Mac Cluer, Iterates of holomorphic self maps of the unit hall in \( C^{N} \). Michigan Math. J., 30, 1983, 97-106. | fulltext mini-dml | DOI | MR | Zbl

[20] E. Vesentini, Invariant distances and invariant differential metric in locally convex spaces. In: Spectral Theory. Polish Scientific Publishers, Warsaw 1982, 493-512. | fulltext mini-dml | MR | Zbl

[21] E. Vesentini, Su un teorema di Wolff e Denjoy. Rend. Sem. Mat. Fis. Milano, LIII, 1983, 17-25. | DOI | MR | Zbl

[22] K. Wlodarczyk, Some properties of analytic maps of operators in J*-algebras. Monatsh. Math., 96, 1983, 325-330. | fulltext EuDML | DOI | MR | Zbl

[23] K. Wlodarczyk, Studies of iterations of holomorphic maps in J*-algebras and complex Hilbert spaces. Quart. J. Math. Oxford, 37, 1986, 245-256. | DOI | MR | Zbl